Software Defined Networking Based Solution in Load Balancing for Media Transfer in Overlay Network

2020 ◽  
Vol 17 (1) ◽  
pp. 43-47 ◽  
Author(s):  
K. Ramya ◽  
M. Sayeekumar ◽  
G. M. Karthik

Traditional methodologies for routing in media streaming is challenging because packets are not retransmitted when there is loss or corruption of packets. Thus throughput, packet loss rate or delay is not guaranteed. Providing multipath for every transmission helps in meeting efficient load balancing metrics. Software defined networking (SDN) approach is used to configure the network topology and increase the network performance and monitoring. Controller act as a centralized management device which monitors the overlay network. It reacts to network failures/changes by administering alternate routing instructions to the overlay nodes. The overlay network enhances different load balancing metrics. Dijkstra’s algorithm is used to solve the routing problem for find the shortest path. The proposed scheme is using an AOMDV multipath on-demand routing protocol which dynamically finds multipath. It experimentally evaluates performance metrics like end-to-end delay, throughput using AOMDV is compared with AODV.

2012 ◽  
Vol 616-618 ◽  
pp. 2233-2238 ◽  
Author(s):  
Rui Ting Lu ◽  
Xiang Zhen Li ◽  
Jia Hui Wang ◽  
Feng Jie Sun

WSN based on IPv6 is a new network integrated IPv6 and WSN. The related technologies of WSN based on IPv6 was researched, and an architecture of WSN based on IPv6 was proposed according to 6LoWPAN protocol in this article. Efficient and stable route protocol is a main focus to ensure network performance. Refer to on-demand routing protocol DSR, a Load-Balancing route protocol for WSN based on IPv6 was designed. An implementation of this protocol was programmed in NS2, and its simulation results were analyzed. The experimental result shows that this protocol could effectively reduce end-to-end delay and routing overhead, improving the network performance.


2021 ◽  
Author(s):  
Waqas Shah

As the world’s economic activities are expanding, the energy comes to the fore to the question of the sustainable growth in all technological areas, including wireless mobile networking. Energyaware routing schemes for wireless networks have spurred a great deal of recent research towards achieving this goal. Recently, an energy-aware routing protocol for MANETs (so-called energy-efficient ad hoc on-demand routing protocol (EEAODR) for MANETs was proposed, in which the energy load among nodes is balanced so that a minimum energy level is maintained and the resulting network lifetime is increased. In this paper, an Ant Colony Optimization (ACO) inspired approach to EEAODR (ACO-EEAODR) is proposed. To the best of our knowledge, no attempts have been made so far in this direction. Simulation results are provided, demonstrating that the ACO-EEAODR outperforms the EEAODR scheme in terms of energy consumed and network lifetime, chosen as performance metrics.


2015 ◽  
Vol 719-720 ◽  
pp. 744-749
Author(s):  
Hui Han ◽  
Hong De Zhang ◽  
Yang Wang

Ad-hoc communications is a mobile communication networks and computer networks combine with no infrastructure support, and network survivability and flexibility is strong, especially suitable for emergency communication. As the existing mobile ad hoc network routing protocols lack of network load balancing capabilities, this paper proposed a routing protocol based on load balancing LBBR (Load Balancing Based Routing). Simulation results shows that, LBBR can improve the success rate of packet transmission, reducing the average end to end delay, thus effectively improving network performance.


2020 ◽  
Vol 10 (17) ◽  
pp. 5759 ◽  
Author(s):  
Ravie Chandren Muniyandi ◽  
Faizan Qamar ◽  
Ahmed Naeem Jasim

Vehicle Ad-Hoc Network (VANET) is a dynamic decentralized network that consists of various wireless mobile vehicles with no individual user management. Several routing protocols can be used for VANETs, for example, the Location-Aided Routing (LAR) protocol that utilizes location information provided by the Global Positioning System (GPS) sensors. It can help to reduce the search space for the desired route—limiting the search space results in fewer route discovery messages. However, two essential aspects are ignored while applying the LAR protocol in the VANET-based environment. Firstly, the LAR does not exploit the fact that nodes in VANET do not have pure random movement. In other words, nodes in LAR predict the position of destination node by ignoring the fact that the pre-defined constraint on the destination node navigation is met. Secondly, the nodes in the conventional LAR (or simply stated as LAR) protocol use the location information of the destination node before selecting the route location, which is most likely to expire because of the fast movement of the nodes in the VANET environment. This study presents an estimation based on a heuristic approach that was developed to reject weak GPS location data and accept accurate ones. The proposed routing protocol stated as Rectangle-Aided LAR (RALAR) is based on a moving rectangular zone according to the node′s mobility model. Additionally, the proposed RALAR protocol was optimized by using the Genetic Algorithm (GA) by selecting the most suitable time-out variable. The results were compared with LAR and Kalman-Filter Aided-LAR (KALAR), the most commonly utilized protocols in VANET for performance metrics using Packet Delivery Ratio (PDR), average End-to-End Delay (E2E Delay), routing overhead and average energy consumption. The results showed that the proposed RALAR protocol achieved an improvement over the KALAR in terms of PDR of 4.7%, average E2E delay of 60%, routing overhead of 15.5%, and 10.7% of energy consumption. The results proved that the performance of the RALAR protocol had outperformed the KALAR and LAR protocol in terms of regular network performance measures in the VANET environment.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 311 ◽  
Author(s):  
Hai Xue ◽  
Kyung Kim ◽  
Hee Youn

Load Balancing (LB) is one of the most important tasks required to maximize network performance, scalability and robustness. Nowadays, with the emergence of Software-Defined Networking (SDN), LB for SDN has become a very important issue. SDN decouples the control plane from the data forwarding plane to implement centralized control of the whole network. LB assigns the network traffic to the resources in such a way that no one resource is overloaded and therefore the overall performance is maximized. The Ant Colony Optimization (ACO) algorithm has been recognized to be effective for LB of SDN among several existing optimization algorithms. The convergence latency and searching optimal solution are the key criteria of ACO. In this paper, a novel dynamic LB scheme that integrates genetic algorithm (GA) with ACO for further enhancing the performance of SDN is proposed. It capitalizes the merit of fast global search of GA and efficient search of an optimal solution of ACO. Computer simulation results show that the proposed scheme substantially improves the Round Robin and ACO algorithm in terms of the rate of searching optimal path, round trip time, and packet loss rate.


2018 ◽  
Vol 7 (2.22) ◽  
pp. 39 ◽  
Author(s):  
A Sebastian ◽  
S Sivagurunathan ◽  
. .

IETF ROLL working Group standardized the IPv6 Routing protocol (RPL) for applications over low-power and lossy networks (LLNs). RPL constructs a Destination Oriented Direction Acyclic Graph (DODAG) to organize network topology. RPL shows fast network setup and good scalability. However, it may suffer from load imbalance due to diverse network traffic and heavy load on preferred or forwarding parents. To optimize the load balancing of routes in RPL, this paper proposes load balancing metric based routing protocol called lbRPL. We introduce a new routing metric for RPL called load balancing index (LBI), which exploits load balancing characteristics of RPL nodes to select more load balanced parents and routes. LBI includes ETX, Parent count (Pc) and Remaining Parent Energy (Pe) metrics to make routing decisions. Simulation results show that lbRPL improves network performance, stability and improved network life time to RPL.  


Author(s):  
Dheyaa Jasim Kadhim ◽  
Ali Abdulwahhab Mohammed

The problem motivation of this work deals with how to control the network overhead and reduce the network latency that may cause many unwanted loops resulting from using standard routing. This work proposes three different wireless routing protocols which they are originally using some advantages for famous wireless ad-hoc routing protocols such as dynamic source routing (DSR), optimized link state routing (OLSR), destination sequenced distance vector (DSDV) and zone routing protocol (ZRP). The first proposed routing protocol is presented an enhanced destination sequenced distance vector (E-DSDV) routing protocol, while the second proposed routing protocol is designed based on using the advantages of DSDV and ZRP and we named it as DS-ZRP routing protocol. The third proposed routing protocol is designed based on using the advantaged of multipoint relays in OSLR protocol with the advantages of route cashing in DSR protocol, and we named it as OLS-DSR routing protocol. Then, some experimental tests are doing by demonstration case studies and the experimental results proved that our proposed routing protocols outperformed than current wireless routing protocols in terms of important network performance metrics such as periodical broadcast, network control overhead, bandwidth overhead, energy consumed and latency.


2021 ◽  
Author(s):  
Waqas Shah

As the world’s economic activities are expanding, the energy comes to the fore to the question of the sustainable growth in all technological areas, including wireless mobile networking. Energyaware routing schemes for wireless networks have spurred a great deal of recent research towards achieving this goal. Recently, an energy-aware routing protocol for MANETs (so-called energy-efficient ad hoc on-demand routing protocol (EEAODR) for MANETs was proposed, in which the energy load among nodes is balanced so that a minimum energy level is maintained and the resulting network lifetime is increased. In this paper, an Ant Colony Optimization (ACO) inspired approach to EEAODR (ACO-EEAODR) is proposed. To the best of our knowledge, no attempts have been made so far in this direction. Simulation results are provided, demonstrating that the ACO-EEAODR outperforms the EEAODR scheme in terms of energy consumed and network lifetime, chosen as performance metrics.


2019 ◽  
Vol 8 (3) ◽  
pp. 5700-5707

MP-OLSR is the abbreviation of Multipath (Optimized Link source Routing) Protocol which is also known as hybrid protocol, that helps to increase the path in OLSR which clearly works on “proactive routing protocol” specifically developed for Ad Hoc Networks. Wireless Ah Hoc Networks are one among the emerging technology with many operations. This network has some uniquecharacteristics like shared co-operation, dynamic topology and wireless medium.MP-OLSR protocol has the potential to achieve dynamic exchange of data without relying on one base station or a backbone wired network and it is also capable of handling the intermittent exchange of data to manage the topology information for the network also it maintains the design of on-demand routing table and the packets will be forwarded to multiple paths. Here, we propose an idea for enhancing the Multipath-OLSR by using Clustering Algorithm which helps to avoid link failure and recovering the route and also routing protocol to reduce traffic delay and overhead of network that eventually increases the throughput and delivery ratio of a packet


Sign in / Sign up

Export Citation Format

Share Document