scholarly journals Improving the Network Performance using MP-OLSR Protocol for Wireless Ad Hoc Network (MANET)

2019 ◽  
Vol 8 (3) ◽  
pp. 5700-5707

MP-OLSR is the abbreviation of Multipath (Optimized Link source Routing) Protocol which is also known as hybrid protocol, that helps to increase the path in OLSR which clearly works on “proactive routing protocol” specifically developed for Ad Hoc Networks. Wireless Ah Hoc Networks are one among the emerging technology with many operations. This network has some uniquecharacteristics like shared co-operation, dynamic topology and wireless medium.MP-OLSR protocol has the potential to achieve dynamic exchange of data without relying on one base station or a backbone wired network and it is also capable of handling the intermittent exchange of data to manage the topology information for the network also it maintains the design of on-demand routing table and the packets will be forwarded to multiple paths. Here, we propose an idea for enhancing the Multipath-OLSR by using Clustering Algorithm which helps to avoid link failure and recovering the route and also routing protocol to reduce traffic delay and overhead of network that eventually increases the throughput and delivery ratio of a packet

2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668360 ◽  
Author(s):  
Young-jun Oh ◽  
Kang-whan Lee

Mobile ad hoc networks comprise mobile nodes. The nodes both send and receive messages and can communicate with each other. Thus, the network builds its own network structure that is not dependent on the infrastructure. Owing to the characteristics of mobile ad hoc networks, they have been used in environments of poor communication, such as those in which the infrastructure cannot be built; for example, disaster areas and war zones. In this article, we propose an advanced energy-conserving optimal path schedule algorithm. The proposed algorithm sets the routing path using the relative angle, which is the distance between the source node and the base station. Using simulation results, we compared the proposed algorithm to existing algorithms. The protocol used by the proposed algorithm provides a higher packet delivery ratio and lower energy consumption than the lowest ID clustering algorithm and the mobility-based metric for clustering in the mobile ad hoc network algorithm.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


Author(s):  
Priyanka Bharadwaj ◽  
Surjeet Balhara

Background & Objective: There are some challenging issues such as providing Quality of Service (QoS), restricted usage of channels and shared bandwidth pertaining to ad-hoc networks in a dynamic topology. Hence, there is a requirement to support QoS for the application environment and multimedia services in ad-hoc networks with the fast growing and emerging development of information technology. Eventually, bandwidth is one of the key elements to be considered. Methods: Energy aware QoS routing protocol in an ad-hoc network is presented in this article. Results and Conclusion: The simulation results indicate that the improved protocol outperforms Adhoc On-Demand Distance Vector (AODV) routing protocol in terms of QoS metric such as throughput, packet delivery ratio, loss rate and average delay.


2005 ◽  
Vol 11 (1-2) ◽  
pp. 21-38 ◽  
Author(s):  
Yih-Chun Hu ◽  
Adrian Perrig ◽  
David B. Johnson

2018 ◽  
Vol 7 (3.16) ◽  
pp. 76
Author(s):  
Deepak . ◽  
Rajkumar .

Vehicular ad hoc networks is an emerging area for researchers to provide intelligent transportation system to the society. It is due to the wide area of applications of VANETs interest is developed among the people from different countries to be a part of it. Therefore many projects had been started and also presently working to implement VANETs in real world scenario. The main challenge in its implementation is to provide a secure mechanism against the various attacks and threats that have the capability to bring the network performance significantly down. In this paper to overcome different types of authentication based attacks in VANETs an ECDSA based secure routing protocol SE-AODV is proposed with security features incorporated in already existing AODV routing protocol. The performance of SE-AODV is evaluated and compared with original AODV and AODV with black hole attack (BH-AODV). The SE-AODV shows better performance with the parameters used for comparison with the variation in vehicle density, speed of vehicles and simulation time. 


2014 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
B. Anantasatya Adhi ◽  
Ruki Harwahyu ◽  
Abdusy Syarif ◽  
Harris Simaremare ◽  
R. Fitri Sari ◽  
...  

AODV routing protocol facilitates changing and simple-to-setup network environment. It helps setting up a network without sufficient infrastructure, such as in disaster area. Development of AODV protocol has gathered a worldwide research interest. However, not many researches implement AODV routing protocol in real mobile nodes and real MANET. In addition, real implementation deals with other works concerning underlying protocol, firmware and hardware configuration, as well as detailed topology both in logical and physical arrangement. This work aims to implements Ad-hoc On-demand Distant Vector – particularly University of Indonesia AODV (AODV-UI) routing protocol on low-end inexpensive generic wireless routers as a proof of concept. AODV-UI is an improved version of AODV routing protocol that implements gateway interconnection and reverse route capability. This routing protocol has been previously successfully tested in NS-2. In this work, current AODV-UI protocol is ported to OpenWRT + MIPS (Microprocessor without Interlocked Pipeline Stages) little endian architecture then tested on the real networking environment. Underlying media access layer is also altered to provide the protocol greater control over the network. Performance of this implementation is measured in terms of energy consumption, routing overhead, end-to-end delay, protocol reliability and packet delivery ratio.


Author(s):  
Sudesh Kumar ◽  
Abhishek Bansal ◽  
Ram Shringar Raw

Recently, the flying ad-hoc network (FANETs) is a popular networking technology used to create a wireless network through unmanned aerial vehicles (UAVs). In this network, the UAV nodes work as intermediate nodes that communicate with each other to transmit data packets over the network, in the absence of fixed an infrastructure. Due to high mobility degree of UAV nodes, network formation and deformation among the UAVs are very frequent. Therefore, effective routing is a more challenging issue in FANETs. This paper presents performance evaluations and comparisons of the popular topology-based routing protocol namely AODV and position-based routing protocol, namely LAR for high speed mobility as well as a verity of the density of UAV nodes in the FANETs environment through NS-2 simulator. The extensive simulation results have shown that LAR gives better performance than AODV significantly in terms of the packet delivery ratio, normalized routing overhead, end-to-end delay, and average throughput, which make it a more effective routing protocol for the highly dynamic nature of FANETs.


Sign in / Sign up

Export Citation Format

Share Document