How to Overcoming Cyber Security Challenges Using Data Science

2020 ◽  
Vol 17 (9) ◽  
pp. 4116-4121
Author(s):  
R. Geetanjali ◽  
Charles Galaxyaan ◽  
M. Niranjanamurthy

Data science, in its utmost essential form, is wholly about realizing. It encompasses reviewing, Processing, and Extracting valued identifications from a set of information. However, the word and procedure have-been about for quite a few time spans, it was principally a subsection of computer science. Currently, it has established into a self-determining field. One of the modern application of data-science includes cyber security. Cyber Security is an emerged and a saturated field which is omnipresent. It’s sound strange to study Data-Science with the expectations of refining cybersecurity, but in realism, it makes a lot of intellect. This research paper evaluates the progresses in using Data science for cyber security, the categories of cybersecurity threats and challenges posed. The authors have analyzed how data science concepts are being used to solve these challenges and detect and prevent attacks real-time.

Author(s):  
Tho V. Le ◽  
Satish V. Ukkusuri

The objective of this study is to understand how senders choose shipping services for different products, given the availability of both emerging crowd-shipping ( CS) and traditional carriers in a logistics market. Using data collected from a United States (U.S.) survey, Random Utility Maximization (RUM) and Random Regret Minimization (RRM) models have been employed to reveal factors that influence the diversity of decisions made by senders. Shipping costs, along with additional real-time services such as courier reputations, tracking info, e-notifications, and customized delivery time and location, have been found to have remarkable impacts on senders’ choices. Interestingly, potential senders were willing to pay more to ship grocery items such as food, beverages, and medicines by CS services. Moreover, the real-time services have low elasticities, meaning that only a slight change in those services will lead to a change in sender behavior. Finally, data-science techniques were used to assess the performance of the RUM and RRM models and found to have similar accuracies. The findings from this research will help logistics firms address potential market segments, prepare service configurations to fulfill senders’ expectations, and develop effective business operations strategies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Andrea Rau

Data collected in very large quantities are called big data, and big data has changed the way we think about and answer questions in many different fields, like weather forecasting and biology. With all this information available, we need computers to help us store, process, analyze, and understand it. Data science combines tools from fields like statistics, mathematics, and computer science to find interesting patterns in big data. Data scientists write step-by-step instructions called algorithms to teach computers how to learn from data. To help computers understand these instructions, algorithms must be translated from the original question asked by a data scientist into a programming language—and the results must be translated back, so that humans can understand them. That means that data scientists are data detectives, programmers, and translators all in one!


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 955 ◽  
Author(s):  
Sandip Barui ◽  
Sankha Mukherjee ◽  
Amiy Srivastava ◽  
Kinnor Chattopadhyay

Owing to the continuous deterioration in the quality of iron ore and scrap, there is an increasing focus on improving the Basic Oxygen Furnace (BOF) process to utilize lower grade input materials. The present paper discusses dephosphorization in BOF steelmaking from a data science perspective, which thus enables steelmakers to produce medium and low phosphorus steel grades. In the present study, data from two steel mills (Plant I and Plant II) were collected and various statistical methods were employed to analyze the data. While most operators in steel plants use spreadsheet-based techniques and linear regression to analyze data, this paper discusses on the suitability of selecting various statistical methods, and benchmarking tests to analyze such dephosphorization data sets. The data contains a wide range of operating conditions, both low and high phosphorus input loads, different slag basicity’s, different slag chemistries, and different end point temperatures, etc. The predicted phosphorus partition from various statistical models is compared against plant data and verified against previously published research.


Author(s):  
Shaveta Bhatia

 The epoch of the big data presents many opportunities for the development in the range of data science, biomedical research cyber security, and cloud computing. Nowadays the big data gained popularity.  It also invites many provocations and upshot in the security and privacy of the big data. There are various type of threats, attacks such as leakage of data, the third party tries to access, viruses and vulnerability that stand against the security of the big data. This paper will discuss about the security threats and their approximate method in the field of biomedical research, cyber security and cloud computing.


2019 ◽  
Vol 20 (5) ◽  
pp. 999-1014 ◽  
Author(s):  
Stephen B. Cocks ◽  
Lin Tang ◽  
Pengfei Zhang ◽  
Alexander Ryzhkov ◽  
Brian Kaney ◽  
...  

Abstract The quantitative precipitation estimate (QPE) algorithm developed and described in Part I was validated using data collected from 33 Weather Surveillance Radar 1988-Doppler (WSR-88D) radars on 37 calendar days east of the Rocky Mountains. A key physical parameter to the algorithm is the parameter alpha α, defined as the ratio of specific attenuation A to specific differential phase KDP. Examination of a significant sample of tropical and continental precipitation events indicated that α was sensitive to changes in drop size distribution and exhibited lower (higher) values when there were lower (higher) concentrations of larger (smaller) rain drops. As part of the performance assessment, the prototype algorithm generated QPEs utilizing a real-time estimated and a fixed α were created and evaluated. The results clearly indicated ~26% lower errors and a 26% better bias ratio with the QPE utilizing a real-time estimated α as opposed to using a fixed value as was done in previous studies. Comparisons between the QPE utilizing a real-time estimated α and the operational dual-polarization (dual-pol) QPE used on the WSR-88D radar network showed the former exhibited ~22% lower errors, 7% less bias, and 5% higher correlation coefficient when compared to quality controlled gauge totals. The new QPE also provided much better estimates for moderate to heavy precipitation events and performed better in regions of partial beam blockage than the operational dual-pol QPE.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
César de Oliveira Ferreira Silva ◽  
Mariana Matulovic ◽  
Rodrigo Lilla Manzione

Abstract Groundwater governance uses modeling to support decision making. Therefore, data science techniques are essential. Specific difficulties arise because variables must be used that cannot be directly measured, such as aquifer recharge and groundwater flow. However, such techniques involve dealing with (often not very explicitly stated) ethical questions. To support groundwater governance, these ethical questions cannot be solved straightforward. In this study, we propose an approach called “open-minded roadmap” to guide data analytics and modeling for groundwater governance decision making. To frame the ethical questions, we use the concept of geoethical thinking, a method to combine geoscience-expertise and societal responsibility of the geoscientist. We present a case study in groundwater monitoring modeling experiment using data analytics methods in southeast Brazil. A model based on fuzzy logic (with high expert intervention) and three data-driven models (with low expert intervention) are tested and evaluated for aquifer recharge in watersheds. The roadmap approach consists of three issues: (a) data acquisition, (b) modeling and (c) the open-minded (geo)ethical attitude. The level of expert intervention in the modeling stage and model validation are discussed. A search for gaps in the model use is made, anticipating issues through the development of application scenarios, to reach a final decision. When the model is validated in one watershed and then extrapolated to neighboring watersheds, we found large asymmetries in the recharge estimatives. Hence, we can show that more information (data, expertise etc.) is needed to improve the models’ predictability-skill. In the resulting iterative approach, new questions will arise (as new information comes available), and therefore, steady recourse to the open-minded roadmap is recommended. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document