FPGA Implementation of Speckle Noise Removal in Real Time Medical Images

2017 ◽  
Vol 7 (6) ◽  
pp. 1263-1270 ◽  
Author(s):  
D. Devasena ◽  
M. Jagadeeswari
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Praveen Kumar Lendale ◽  
N.M. Nandhitha

PurposeSpeckle noise removal in ultrasound images is one of the important tasks in biomedical-imaging applications. Many filtering -based despeckling methods are discussed in many existing works. Two-dimensional (2-D) transforms are also used enormously for the reduction of speckle noise in ultrasound medical images. In recent years, many soft computing-based intelligent techniques have been applied to noise removal and segmentation techniques. However, there is a requirement to improve the accuracy of despeckling using hybrid approaches.Design/methodology/approachThe work focuses on double-bank anatomy with framelet transform combined with Gaussian filter (GF) and also consists of a fuzzy kind of clustering approach for despeckling ultrasound medical images. The presented transform efficiently rejects the speckle noise based on the gray scale relative thresholding where the directional filter group (DFB) preserves the edge information.FindingsThe proposed approach is evaluated by different performance indicators such as the mean square error (MSE), peak signal to noise ratio (PSNR) speckle suppression index (SSI), mean structural similarity and the edge preservation index (EPI) accordingly. It is found that the proposed methodology is superior in terms of all the above performance indicators.Originality/valueFuzzy kind clustering methods have been proved to be better than the conventional threshold methods for noise dismissal. The algorithm gives a reconcilable development as compared to other modern speckle reduction procedures, as it preserves the geometric features even after the noise dismissal.


2020 ◽  
Vol 8 (5) ◽  
pp. 1851-1854

In medical images, medical images are corrupted by different types of noise. It is important to get a precise picture and accurately observe the correspondence. Removing noise from medical images has become a very difficult problem in the field of the medical image. The most well-known noise reduction method, which is usually based on the local statistics of medical images, is efficient because of the noise reduction of medical images. In paper, an efficient and simple method for noise reduction from medical images is presented. The paper proposes a filtering system to combine both the Median filter and Gaussian filter to remove the Speckle noise form Medical and Ultrasound images. The image quality is measured through statistical quantities: Peak signal to noise ratio (PSNR). Experimental results show that the proposed system removes Speckle noise from medical images.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850006 ◽  
Author(s):  
Pichid Kittisuwan

In the digital world, artificial intelligence tools and machine learning algorithms are widely applied in analysis of medical images for identifying diseases and make diagnoses; for example, to make recognition and classification. Speckle noises affect all medical imaging systems. Therefore, reduction in corrupting speckle noises is very important, since it deteriorates the quality of the medical images and makes tasks such as recognition and classification difficult. Most existing denoising algorithms have been developed for the additive white Gaussian noise (AWGN). However, AWGN is not a speckle noise. Therefore, this work presents a novel speckle noise removal algorithm within the framework of Bayesian estimation and wavelet analysis. This research focuses on noise reduction by the Bayesian with wavelet-based method because it provides good efficiency in noise reduction and spends short time in processing. The subband decomposition of a logarithmically transformed image is best described by a family of heavy-tailed densities such as Logistic distribution. Then, this research proposes the maximum a posteriori (MAP) estimator assuming Logistic random vectors for each parent-child wavelet co-efficient of noise-free log-transformed data and log-normal density for speckle noises. Moreover, a redundant wavelet transform, i.e., the cycle-spinning method, is applied in our proposed methods. In our experiments, our proposed methods give promising denoising results.


Sign in / Sign up

Export Citation Format

Share Document