Breast Cancer Detection with Revamped Dataset Using Machine Learning Techniques

2021 ◽  
Vol 11 (12) ◽  
pp. 2996-3009
Author(s):  
Sundarambal Balaraman ◽  
Ramesh Ramamoorthy ◽  
Raja Krishnamoorthi

Machine learning is a current topic of interest in research and industry, with the implementation of novel strategies all the time. The main purpose of this research activity is to determine the efficiency of machine learning techniques in the detection research of breast cancer. The incidence and mortality of breast cancer in women are increasing day by day. Worldwide, researchers have worked hard to help clinicians provide the best model for detecting diagnosis and breast cancer. In this work, learning UCI machine Wisconsin breast cancer data from a set of databases, model, and analyze the performance of existing work use, compared to the same data set. The dataset is analyzed, and the revamped dataset is constructed by eliminating redundant features and appending new features essential for prediction. Logistic regression, K nearest neighbors (KNN), support vector machine (SVM), decision trees, random forest, XGBoost, using a machine learning algorithm, such as re-organized data set of artificial neural network AdaBoost, 8 one of prediction build the model application (ANN). Standard to analyze the accuracy rate. In the experiment, these classifications have been shown to work for breast cancer with >97% accuracy. Logistic regression, XGBoost and Adaboost, stand on top with 99.28 percent accuracy. The experiment also, the balanced data set of removal outliers and balance, shows that have a significant impact on the model’s prediction performance.

2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


2021 ◽  
Author(s):  
Praveeen Anandhanathan ◽  
Priyanka Gopalan

Abstract Coronavirus disease (COVID-19) is spreading across the world. Since at first it has appeared in Wuhan, China in December 2019, it has become a serious issue across the globe. There are no accurate resources to predict and find the disease. So, by knowing the past patients’ records, it could guide the clinicians to fight against the pandemic. Therefore, for the prediction of healthiness from symptoms Machine learning techniques can be implemented. From this we are going to analyse only the symptoms which occurs in every patient. These predictions can help clinicians in the easier manner to cure the patients. Already for prediction of many of the diseases, techniques like SVM (Support vector Machine), Fuzzy k-Means Clustering, Decision Tree algorithm, Random Forest Method, ANN (Artificial Neural Network), KNN (k-Nearest Neighbour), Naïve Bayes, Linear Regression model are used. As we haven’t faced this disease before, we can’t say which technique will give the maximum accuracy. So, we are going to provide an efficient result by comparing all the such algorithms in RStudio.


Author(s):  
Hesham M. Al-Ammal

Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection.


2019 ◽  
Vol 21 (3) ◽  
pp. 80-92
Author(s):  
Madhuri Gupta ◽  
Bharat Gupta

Cancer is a disease in which cells in body grow and divide beyond the control. Breast cancer is the second most common disease after lung cancer in women. Incredible advances in health sciences and biotechnology have prompted a huge amount of gene expression and clinical data. Machine learning techniques are improving the prior detection of breast cancer from this data. The research work carried out focuses on the application of machine learning methods, data analytic techniques, tools, and frameworks in the field of breast cancer research with respect to cancer survivability, cancer recurrence, cancer prediction and detection. Some of the widely used machine learning techniques used for detection of breast cancer are support vector machine and artificial neural network. Apache Spark data processing engine is found to be compatible with most of the machine learning frameworks.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 22 ◽  
Author(s):  
Jabeen Sultana ◽  
Abdul Khader Jilani ◽  
. .

The primary identification and prediction of type of the cancer ought to develop a compulsion in cancer study, in order to assist and supervise the patients. The significance of classifying cancer patients into high or low risk clusters needs commanded many investigation teams, from the biomedical and the bioinformatics area, to learn and analyze the application of machine learning (ML) approaches. Logistic Regression method and Multi-classifiers has been proposed to predict the breast cancer. To produce deep predictions in a new environment on the breast cancer data. This paper explores the different data mining approaches using Classification which can be applied on Breast Cancer data to build deep predictions. Besides this, this study predicts the best Model yielding high performance by evaluating dataset on various classifiers. In this paper Breast cancer dataset is collected from the UCI machine learning repository has 569 instances with 31 attributes. Data set is pre-processed first and fed to various classifiers like Simple Logistic-regression method, IBK, K-star, Multi-Layer Perceptron (MLP), Random Forest, Decision table, Decision Trees (DT), PART, Multi-Class Classifiers and REP Tree.  10-fold cross validation is applied, training is performed so that new Models are developed and tested. The results obtained are evaluated on various parameters like Accuracy, RMSE Error, Sensitivity, Specificity, F-Measure, ROC Curve Area and Kappa statistic and time taken to build the model. Result analysis reveals that among all the classifiers Simple Logistic Regression yields the deep predictions and obtains the best model yielding high and accurate results followed by other methods IBK: Nearest Neighbor Classifier, K-Star: instance-based Classifier, MLP- Neural network. Other Methods obtained less accuracy in comparison with Logistic regression method.  


2019 ◽  
Vol 11 (16) ◽  
pp. 1943 ◽  
Author(s):  
Omid Rahmati ◽  
Saleh Yousefi ◽  
Zahra Kalantari ◽  
Evelyn Uuemaa ◽  
Teimur Teimurian ◽  
...  

Mountainous areas are highly prone to a variety of nature-triggered disasters, which often cause disabling harm, death, destruction, and damage. In this work, an attempt was made to develop an accurate multi-hazard exposure map for a mountainous area (Asara watershed, Iran), based on state-of-the art machine learning techniques. Hazard modeling for avalanches, rockfalls, and floods was performed using three state-of-the-art models—support vector machine (SVM), boosted regression tree (BRT), and generalized additive model (GAM). Topo-hydrological and geo-environmental factors were used as predictors in the models. A flood dataset (n = 133 flood events) was applied, which had been prepared using Sentinel-1-based processing and ground-based information. In addition, snow avalanche (n = 58) and rockfall (n = 101) data sets were used. The data set of each hazard type was randomly divided to two groups: Training (70%) and validation (30%). Model performance was evaluated by the true skill score (TSS) and the area under receiver operating characteristic curve (AUC) criteria. Using an exposure map, the multi-hazard map was converted into a multi-hazard exposure map. According to both validation methods, the SVM model showed the highest accuracy for avalanches (AUC = 92.4%, TSS = 0.72) and rockfalls (AUC = 93.7%, TSS = 0.81), while BRT demonstrated the best performance for flood hazards (AUC = 94.2%, TSS = 0.80). Overall, multi-hazard exposure modeling revealed that valleys and areas close to the Chalous Road, one of the most important roads in Iran, were associated with high and very high levels of risk. The proposed multi-hazard exposure framework can be helpful in supporting decision making on mountain social-ecological systems facing multiple hazards.


2018 ◽  
Author(s):  
Sandip S Panesar ◽  
Rhett N D’Souza ◽  
Fang-Cheng Yeh ◽  
Juan C Fernandez-Miranda

AbstractBackgroundMachine learning (ML) is the application of specialized algorithms to datasets for trend delineation, categorization or prediction. ML techniques have been traditionally applied to large, highly-dimensional databases. Gliomas are a heterogeneous group of primary brain tumors, traditionally graded using histopathological features. Recently the World Health Organization proposed a novel grading system for gliomas incorporating molecular characteristics. We aimed to study whether ML could achieve accurate prognostication of 2-year mortality in a small, highly-dimensional database of glioma patients.MethodsWe applied three machine learning techniques: artificial neural networks (ANN), decision trees (DT), support vector machine (SVM), and classical logistic regression (LR) to a dataset consisting of 76 glioma patients of all grades. We compared the effect of applying the algorithms to the raw database, versus a database where only statistically significant features were included into the algorithmic inputs (feature selection).ResultsRaw input consisted of 21 variables, and achieved performance of (accuracy/AUC): 70.7%/0.70 for ANN, 68%/0.72 for SVM, 66.7%/0.64 for LR and 65%/0.70 for DT. Feature selected input consisted of 14 variables and achieved performance of 73.4%/0.75 for ANN, 73.3%/0.74 for SVM, 69.3%/0.73 for LR and 65.2%/0.63 for DT.ConclusionsWe demonstrate that these techniques can also be applied to small, yet highly-dimensional datasets. Our ML techniques achieved reasonable performance compared to similar studies in the literature. Though local databases may be small versus larger cancer repositories, we demonstrate that ML techniques can still be applied to their analysis, though traditional statistical methods are of similar benefit.


The prediction of price for a vehicle has been more popular in research area, and it needs predominant effort and information about the experts of this particular field. The number of different attributes is measured and also it has been considerable to predict the result in more reliable and accurate. To find the price of used vehicles a well defined model has been developed with the help of three machine learning techniques such as Artificial Neural Network, Support Vector Machine and Random Forest. These techniques were used not on the individual items but for the whole group of data items. This data group has been taken from some web portal and that same has been used for the prediction. The data must be collected using web scraper that was written in PHP programming language. Distinct machine learning algorithms of varying performances had been compared to get the best result of the given data set. The final prediction model was integrated into Java application


2021 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
S. L. Ávila ◽  
H. M. Schaberle ◽  
S. Youssef ◽  
F. S. Pacheco ◽  
C. A. Penz

The health of a rotating electric machine can be evaluated by monitoring electrical and mechanical parameters. As more information is available, it easier can become the diagnosis of the machine operational condition. We built a laboratory test bench to study rotor unbalance issues according to ISO standards. Using the electric stator current harmonic analysis, this paper presents a comparison study among Support-Vector Machines, Decision Tree classifies, and One-vs-One strategy to identify rotor unbalance kind and severity problem – a nonlinear multiclass task. Moreover, we propose a methodology to update the classifier for dealing better with changes produced by environmental variations and natural machinery usage. The adaptative update means to update the training data set with an amount of recent data, saving the entire original historical data. It is relevant for engineering maintenance. Our results show that the current signature analysis is appropriate to identify the type and severity of the rotor unbalance problem. Moreover, we show that machine learning techniques can be effective for an industrial application.


Author(s):  
Geraldo Braz Júnior ◽  
Leonardo de Oliveira Martins ◽  
Aristófanes Corrêa Silva ◽  
Anselmo Cardoso de Paiva

Breast cancer is a malignant (cancer) tumor that starts from cells of the breast, being the major cause of deaths by cancer in the female population. There has been tremendous interest in the use of image processing and analysis techniques for computer aided detection (CAD)/ diagnostics (CADx) in digital mammograms. The goal has been to increase diagnostic accuracy as well as the reproducibility of mammographic interpretation. CAD/CADx systems can aid radiologists by providing a second opinion and may be used in the first stage of examination in the near future, providing the reduction of the variability among radiologists in the interpretation of mammograms. This chapter provides an overview of techniques used in computer-aided detection and diagnosis of breast cancer. The authors focus on the application of texture and shape tissues signature used with machine learning techniques, like support vector machines (SVM) and growing neural gas (GNG).


Sign in / Sign up

Export Citation Format

Share Document