Abnormal Threshold Voltage Shifts in P-Channel Low-Temperature Polycrystalline Silicon Thin Film Transistors Under Negative Bias Temperature Stress

2015 ◽  
Vol 15 (10) ◽  
pp. 7555-7558 ◽  
Author(s):  
Sang Sub Kim ◽  
Pyung Ho Choi ◽  
Do Hyun Baek ◽  
Jae Hyeong Lee ◽  
Byoung Deog Choi

In this research, we have investigated the instability of P-channel low-temperature polycrystalline silicon (poly-Si) thin-film transistors (LTPS TFTs) with double-layer SiO2/SiNX dielectrics. A negative gate bias temperature instability (NBTI) stress was applied and a turn-around behavior phenomenon was observed in the Threshold Voltage Shift (Vth). A positive threshold voltage shift occurs in the first stage, resulting from the negative charge trapping at the SiNX/SiO2 dielectric interface being dominant over the positive charge trapping at dielectric/Poly-Si interface. Following a stress time of 7000 s, the Vth switches to the negative voltage direction, which is “turn-around” behavior. In the second stage, the Vth moves from −1.63 V to −2 V, overwhelming the NBTI effect that results in the trapping of positive charges at the dielectric/Poly-Si interface states and generating grain-boundary trap states and oxide traps.

1991 ◽  
Vol 30 (Part 1, No. 12B) ◽  
pp. 3719-3723 ◽  
Author(s):  
Ryoji Oritsuki ◽  
Toshikazu Horii ◽  
Akira Sasano ◽  
Ken Tsutsui ◽  
Toshiko Koizumi ◽  
...  

2007 ◽  
Vol 46 (7A) ◽  
pp. 4042-4045 ◽  
Author(s):  
Chang-Wook Han ◽  
Min-Koo Han ◽  
Nack-Bong Choi ◽  
Chang-Dong Kim ◽  
Ki-Yong Kim ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327
Author(s):  
Je-Hyuk Kim ◽  
Jun Tae Jang ◽  
Jong-Ho Bae ◽  
Sung-Jin Choi ◽  
Dong Myong Kim ◽  
...  

In this study, we analyzed the threshold voltage shift characteristics of bottom-gate amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) under a wide range of positive stress voltages. We investigated four mechanisms: electron trapping at the gate insulator layer by a vertical electric field, electron trapping at the drain-side GI layer by hot-carrier injection, hole trapping at the source-side etch-stop layer by impact ionization, and donor-like state creation in the drain-side IGZO layer by a lateral electric field. To accurately analyze each mechanism, the local threshold voltages of the source and drain sides were measured by forward and reverse read-out. By using contour maps of the threshold voltage shift, we investigated which mechanism was dominant in various gate and drain stress voltage pairs. In addition, we investigated the effect of the oxygen content of the IGZO layer on the positive stress-induced threshold voltage shift. For oxygen-rich devices and oxygen-poor devices, the threshold voltage shift as well as the change in the density of states were analyzed.


2000 ◽  
Vol 76 (17) ◽  
pp. 2442-2444 ◽  
Author(s):  
C. T. Angelis ◽  
C. A. Dimitriadis ◽  
F. V. Farmakis ◽  
J. Brini ◽  
G. Kamarinos ◽  
...  

2007 ◽  
Vol 46 (7A) ◽  
pp. 4021-4027 ◽  
Author(s):  
Hitoshi Ueno ◽  
Yuta Sugawara ◽  
Hiroshi Yano ◽  
Tomoaki Hatayama ◽  
Yukiharu Uraoka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document