Nanostructured NiMoS2/Carbon Catalysts for Syngas Conversion to Higher Alcohols

2020 ◽  
Vol 20 (8) ◽  
pp. 5260-5266
Author(s):  
Waqas Aslam ◽  
Qing Ma ◽  
Fengqui Tang ◽  
Jiuling Chen ◽  
Jorge Beltramini ◽  
...  

Syngas conversion to higher alcohols remains a very attractive alternative due to the abundance of syngas feedstock, such as renewable carbon and waste-carbon resources. Catalysts suitable for syngas conversion still show low selectivity to alcohols. In this article, we present nanostructured NiMoS2 and CoMoS2 catalysts supported on activated carbon pellets and design strategies to improve its selectivity towards higher alcohols. Activated carbon pellets were treated with concentrated HNO3 to enlarge porous channels and enable better dispersion of NiMoS2 and CoMoS2. These treatment steps lead to a formation of nanostructured NiMoS2 and CoMoS2 catalysts and promoted higher selectivity to ethanol, propanol and butanol. BET surface area of 532 m2 g−1 was obtained for NiMoS2/Carbon catalysts from the nitrogen physisorption analysis. In catalytic tests, the highest CO conversion (39.1%) was achieved by the NiMoS2/Carbon, whereas the CoMoS2/Carbon showed the highest alcohol selectivity (74.4%). CoMoS2 catalysts supported on activated carbon pellets proved to be highly active towards undesired by-product “filamentous carbon.”

ChemCatChem ◽  
2013 ◽  
Vol 6 (2) ◽  
pp. 572-579 ◽  
Author(s):  
Ying Li ◽  
Guojun Lan ◽  
Guoquan Feng ◽  
Wei Jiang ◽  
Wenfeng Han ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 504
Author(s):  
Yane Ansanay ◽  
Praveen Kolar ◽  
Ratna Sharma-Shivappa ◽  
Jay Cheng ◽  
Consuelo Arellano

In the present research, activated carbon-supported sulfonic acid catalysts were synthesized and tested as pretreatment agents for the conversion of switchgrass into glucose. The catalysts were synthesized by reacting sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid with activated carbon. The characterization of catalysts suggested an increase in surface acidities, while surface area and pore volumes decreased because of sulfonation. Batch experiments were performed in 125 mL serum bottles to investigate the effects of temperature (30, 60, and 90 °C), reaction time (90 and 120 min) on the yields of glucose. Enzymatic hydrolysis of pretreated switchgrass using Ctec2 yielded up to 57.13% glucose. Durability tests indicated that sulfonic solid-impregnated carbon catalysts were able to maintain activity even after three cycles. From the results obtained, the solid acid catalysts appear to serve as effective pretreatment agents and can potentially reduce the use of conventional liquid acids and bases in biomass-into-biofuel production.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


2019 ◽  
Vol 81 (3) ◽  
Author(s):  
N. Masdiana ◽  
M. Rashid ◽  
S. Hajar ◽  
M. R. Ammar

TrikotAC filter aids is a combination of a pre-coating material PreKot™ with two adsorbents; activated carbon and lime and their characteristics were investigated in this study. TrikotAC was formulated into three different weight ratios of 5:1:94, 10:1:89 and 10:5:85, respectively. The relationship between adsorption properties and characteristics of the formulated materials particle size distribution, particle density, bulk density, and BET surface area were investigated. The results showed that the adsorption capacity for TrikotAC 10:5:85 (11.88 mg/g) was higher than for the other formulated filter aids samples, and the formulated filter aids material TrikotAC showed promising characteristic as a filter aids and adsorbent for organic compound in fabric filtration system.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Nicolás Carrara ◽  
Carolina Betti ◽  
Fernando Coloma-Pascual ◽  
María Cristina Almansa ◽  
Laura Gutierrez ◽  
...  

A series of low-loaded metallic-activated carbon catalysts were evaluated during the selective hydrogenation of a medium-chain alkyne under mild conditions. The catalysts and support were characterized by ICP, hydrogen chemisorption, Raman spectroscopy, temperature-programmed desorption (TPD), temperature-programmed reduction (TPR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR micro-ATR), transmission electronic microscopy (TEM), and X-ray photoelectronic spectroscopy (XPS). When studying the effect of the metallic phase, the catalysts were active and selective to the alkene synthesis. NiCl/C was the most active and selective catalytic system. Besides, when the precursor salt was evaluated, PdN/C was more active and selective than PdCl/C. Meanwhile, alkyne is present in the reaction media, and geometrical and electronic effects favor alkene desorption and so avoid their overhydrogenation to the alkane. Under mild conditions, nickel catalysts are considerably more active and selective than the Lindlar catalyst.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


2021 ◽  
pp. 133396
Author(s):  
Suk-Hoon Hong ◽  
Kyounghee Chung ◽  
Gina Bang ◽  
Kyung-Min Kim ◽  
Chang-Ha Lee

2005 ◽  
Vol 290 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
J CHOI ◽  
T KIM ◽  
K CHOO ◽  
J SUNG ◽  
M SAIDUTTA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document