A Low Charge Transfer Resistance CuO Composite for Efficient Oxygen Evolution Reaction in Alkaline Media

2021 ◽  
Vol 21 (4) ◽  
pp. 2613-2620
Author(s):  
Abdul Qayoom Mugheri ◽  
Aneela Tahira ◽  
Umair Aftab ◽  
Muhammad Ishaq Abro ◽  
Adeel Liaquat Bhatti ◽  
...  

An efficient, simple, environment-friendly and inexpensive cupric oxide (CuO) electrocatalyst for oxygen evolution reaction (OER) is demonstrated. CuO is chemically deposited on the porous carbon material obtained from the dehydration of common sugar. The morphology of CuO on the porous carbon material is plate-like and monoclinic crystalline phase is confirmed by powder X-ray diffraction. The OER activity of CuO nanostructures is investigated in 1 M KOH aqueous solution. To date, the proposed electrocatalyst has the lowest possible potential of 1.49 V versus RHE (reversible hydrogen electrode) to achieve a current density of 20 mA/cm2 among the CuO based electrocatalysts and has Tafel slope of 115 mV dec-1. The electrocatalyst exhibits an excellent long-term stability for 6 hours along with significant durability. The enhanced catalytic active centers of CuO on the carbon material are due to the porous structure of carbon as well as strong coupling between CuO–C. The functionalization of metal oxides or other related nanostructured materials on porous carbon obtained from common sugar provides an opportunity for the development of efficient energy conversion and energy storage systems.

2021 ◽  
Vol 21 (4) ◽  
pp. 2660-2667
Author(s):  
Abdul Qayoom Mugheri ◽  
Aneela Tahira ◽  
Umair Aftab ◽  
Adeel Liaquat Bhatti ◽  
Ramesh Lal ◽  
...  

Cobalt oxide has been widely investigated among potential transition metal oxides for the electrochemical energy conversion, storage, and water splitting. However, they have inherently low electronic conductivity and high corrosive nature in alkaline media. Herein, we propose a promising and facile approach to improve the conductivity and charge transport of cobalt oxide Co3O4 through chemical coupling with well-dispersed multiwall carbon nanotubes (MWCNTs) during hydrothermal treatment. The morphology of prepared composite material consisting of nanosheets which are anchored on the MWCNTs as confirmed by scanning electron microscopy (SEM). A cubic crystalline system is exhibited by the cobalt oxide as confirmed by the X-ray diffraction study. The Co, O, and C are the only elements present in the composite material. FTIR study has indicated the successful coupling of cobalt oxide with MWCNTs. The chemically coupled cobalt oxide onto the surface of MWCNTs composite is found highly active towards oxygen evolution reaction (OER) with a low onset potential 1.44 V versus RHE, low overpotential 262 mV at 10 mAcm-2 and small Tafel slope 81 mV dec-1. For continuous operation of 40 hours during durability test, no decay in activity was recorded. Electrochemical impedance study further revealed a low charge transfer resistance of 70.64 Ohms for the composite material during the electrochemical reaction and which strongly favored OER kinetics. This work provides a simple, low cost, and smartly designing electrocatalysts via hydrothermal reaction for the catalysis and energy storage applications.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1912 ◽  
Author(s):  
Yujun Si ◽  
Chaozhong Guo ◽  
Chenglong Xie ◽  
Zhongping Xiong

A catalyst toward oxygen evolution reaction (OER) was synthesized by depositing cobalt hydroxide on carbon black. Ultrasonication was applied during precipitation to improve the performance of the catalyst. The ultrasonic-assisted process resulted in the refinement of the cobalt hydroxide particles from 400 nm to 50 nm, and the thorough incorporation of these particles with carbon black substrate. The resulting product exhibited enhanced OER catalytic activity with an onset potential of 1.54 V (vs. reversible hydrogen electrode), a Tafel slope of 18.18 mV/dec, and a stable OER potential at a current density of 10 mA cm−2, because of the reduced resistance of the catalyst and the electron transfer resistance.


2021 ◽  
Author(s):  
Xinxin Sang ◽  
Hengbo Wu ◽  
Nan Zang ◽  
Huilian Che ◽  
Dongyin Liu ◽  
...  

Co2P hybridized with multi-doped carbon nanoleaves is obtained via direct carbonization of ZIF-L/PEI/PA and show good electro-catalytic performance in OER.


2021 ◽  
Author(s):  
Sunglun Kwon ◽  
Ha Eun Lee ◽  
Donghoon Han ◽  
Jong Hyeon Lee

A thin film of MnxCo3−xO4 (MnCoO) nanocatalyst on a porous carbon fiber paper (CFP) electrode for efficient oxygen evolution reaction (OER).


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 354-363
Author(s):  
Hamouda Adam Hamouda ◽  
Shuzhen Cui ◽  
Xiuwen Dai ◽  
Lele Xiao ◽  
Xuan Xie ◽  
...  

Carbon-based materials are manufactured as high-performance electrodes using biomass waste in the renewable energy storage field.


2021 ◽  
Vol 306 ◽  
pp. 127204
Author(s):  
Hongxu Liang ◽  
Hongwei Zhang ◽  
Pinye Zhao ◽  
Xinkun Zhao ◽  
Haowei Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document