scholarly journals Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug

Author(s):  
Alan G. Ramsay ◽  
Amy J. Johnson ◽  
Abigail M. Lee ◽  
Güllü Gorgün ◽  
Rifca Le Dieu ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2333-2333
Author(s):  
Alan G. Ramsay ◽  
Dong-Xia Xing ◽  
William K. Decker ◽  
Jared K. Burks ◽  
William G. Wierda ◽  
...  

Abstract Following allogeneic stem cell transplantation (SCT) and donor lymphocyte infusion (DLI) from adult peripheral blood (APB), chronic lymphocytic leukemia (CLL) cells are good targets of a graft-versus-leukemia effect. However, some patients eligible for this treatment do not have a suitable allogeneic donor and CLL B cells have been shown to be dysfunctional antigen-presenting cells (APCs) for allogeneic APB T cells. As a result, allogeneic APB T cells show suppressed immunological synapse formation with CLL cells. Umbilical cord blood (CB) is a promising source of hematopoietic cells for allogeneic transplantation and can be obtained from matched unrelated donors with greater tolerance for incompletely HLA-matched recipients. Moreover, we have successfully expanded CB T cells ex vivo (anti-CD3/CD28 beads and rIL-2) using a protocol that retains a naïve and diverse immune population including central memory cells. In this present study we used confocal microscopy to visualize F-actin polymerization to assess immunological synapse formation of CB T cells compared to APB T cells with CLL B cells with and without superantigen as APCs. Our results identify the ability of unexpanded and expanded CB CD4 and CD8 T cells to form F-actin immune synapses with CLL B cells and of note, CB was more effective than unexpanded or expanded APB T cells (p<0.05). Of interest, the expansion protocol maintained immune synapse formation with a trend towards increased F-actin polymerization. As control, we examined the ability of unexpanded and expanded T cells to form F-actin synapses with allogeneic healthy B cells with or without superantigen as APCs and found no significant difference between CB and APB as a source of T cells. Our results demonstrate that CB T cells have an enhanced ability to recognize CLL B cells as allogeneic APCs compared to APB T cells and provide important and exciting pre-clinical data for the potential use of expanded CB T cells in the setting of CB transplantation in CLL.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 338-338 ◽  
Author(s):  
Alan G. Ramsay ◽  
Abigail M. Lee ◽  
John G. Gribben

Abstract Cancer is associated with immune deficiency, but the molecular basis for this is poorly defined. We have previously demonstrated that multiple gene expression abnormalities are induced in patients with chronic lymphocytic leukemia (CLL) including defects within the actin cytoskeleton formation pathways. Based on this data, we hypothesized that failure of actin polymerization would result in defects in the formation of the immunological synapse (IS) which is critical for T cell activation and effector function. To assess this, actin polymerization at the IS in T cells in response to superantigen-pulsed B cells (APCs) was visualized using confocal microscopy. We observed significantly reduced ability to polymerize actin at the IS (> 50% reduction) in autologous CD4 and CD8 T cells from previously untreated CLL patients compared to age-matched healthy donors (p<0.05). Since reduced IS formation could result from defects in T cells, APCs or both, we examined IS formation in mixing experiments using T cells or APCs from leukemic patients with healthy allogeneic cells. These experiments demonstrated impaired IS formation using T cells from patients with CLL (p<0.01) or CLL cells as APCs (p<0.01), in keeping with defects in both T cells and APC function of CLL cells. We further postulated that interaction of CLL cells with healthy T cells would induce similar changes. Healthy allogeneic T cells were co-cultured for 48 hours with either allogeneic CLL cells or healthy B cells. Co-culture with CLL cells resulted in subsequent significant impairment in IS formation of the T cells with healthy superantigen pulsed APCs (p<0.01). Blocking experiments using anti-LFA-1 and anti-ICAM1 monoclonal antibodies with CLL B cells prevented subsequent actin remodelling impairment at the IS in the healthy allogeneic donor T cells. Further evidence that direct cell contact with CLL cells and not soluble factors is required to induce this T cell immune defect was provided by the finding that there was no impairment on IS formation when the T cells were co-cultured with CLL cells in transwell culture assays. The finding that direct contact of CLL cells with allogeneic T cells induces impairment in IS formation is relevant for the use of donor lymphocyte infusions in the setting of bulk disease. Co-localization experiments assessed by confocal microscopy suggest that the molecular basis for the defective T cells function stems from inability in T cells from CLL patients to recruit key proteins to the IS efficiently compared to healthy donor T cells. Greater than 50% reduction in co-localization at the IS was seen for dynamin 2, filamin A and LFA-1 integrin (p<0.05). These assays provide a rapid and simple method to assess T cell impairment in cancer and can be used to determine if steps to attempt to improve defective T cell function in cancer are successful. The finding of impaired IS formation as a key T cell defect in these cancer bearing patients has implications for both autologous and allogeneic immunotherapy approaches and identify both IS formation and the molecules regulating its organisation as potential functional markers and targets for the reversal of immune deficiency in cancer.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1794-1794 ◽  
Author(s):  
Dongxia Xing ◽  
Alan G. Ramsay ◽  
Simon Robinson ◽  
Catherine M. Bollard ◽  
Nina Shah ◽  
...  

Abstract Abstract 1794 Immune dysfunction is a hallmark of chronic lymphocytic leukemia (CLL) including suppressed humoral and cell-mediated immune responses. The immunomodulatory agent lenalidomide has shown effective clinical activity against CLL, but its mechanism of action is poorly understood. Previous work has demonstrated that the T cell immunological synapse and functional defects in CLL can be reversed following lenalidomide treatment (J Clin Invest. 2008; 118). Polymerization of F-actin at the NK cell immunological synapse with tumor cells is required for signaling molecules to assemble and regulate NK cell activation and effector function. Confocal microscopy was used to visualize and analyze F-actin polymerization at the immune synapse between NK cells and CLL cells. The impaired immune synapse defect identified in CLL could result from not only the defects of CLL B cells but also defects in the CLL NK cells or a combination of both factors. To investigate the contribution of each factor, we examined synapse formation in experiments using CLL B cells with autologous CLL NK cells or healthy allogeneic NK cells. Conjugates formed with healthy NK cells and CLL B cells exhibited a strong band of F-actin at the immune synapse. In contrast, significantly less actin polymerization at the synapse was observed in autologous CLL NK cells and CLL B cells (P < 0.01). These results indicate CLL B cells, together with CLL NK cells contributed to the immune dysfunction in CLL. As autologous NK cell function in CLL is suppressed, we investigated the utility of CB as a potential functional source of NK cells for CLL immunotherapy. We examined the effect of lenalidomide on NK cell immune synapse function with CLL B cells acting as APCs. We demonstrated that ex vivo treatment of CLL cells with lenalidomide (500 ng/ml) for 48 hours caused a significant increase in the ability of autologous CLL NK cells to form F-actin immune synapses with CLL B cells. The same treatment of CLL B cells also significantly increased the ability of CB-NK cells to form F-actin immunological synapses with these treated CLL B cells compared to untreated CLL B cells (33.6% to 67.3%, P < 0.01, n=6). Our results also show that lenalidomide treatment of autologous NK cells from CLL patients enhanced synapse formation with treated CLL cells compared to experiments using untreated NK cells, but with reduced function compared to CB NK cells. Of note, lenalidomide treatment was shown to increase the recruitment of the signaling molecule Lck to NK cell:CLL cell synapse site, that is known to regulate lytic synapse function. Importantly, lenalidomide treatment significantly increased CB-NK killing of CLL B cells compared to untreated CLL B cells (20.5% versus 48.2%, E:T ratio of 10:1, n = 6, p < 0.001). These results provide insight into the potential mechanism of action of lenalidomide's anti-leukemic function – priming CLL tumor cells for enhanced NK cell lytic synapse formation and effector function. In addition, the data suggests that immunotherapeutic strategies utilizing a combination of CB-NK cells and lenalidomide has an enhanced clinical efficacy in CLL. Disclosures: Gribben: Roche: Honoraria; Celgene: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria; Pharmacyclics: Honoraria.


Blood ◽  
2014 ◽  
Vol 123 (5) ◽  
pp. 717-724 ◽  
Author(s):  
G. Doreen te Raa ◽  
Maria Fernanda Pascutti ◽  
Juan J. García-Vallejo ◽  
Emilie Reinen ◽  
Ester B. M. Remmerswaal ◽  
...  

Key PointsExpression of exhaustion markers is decreased on CMV-specific CD8+ T cells from CLL patients as compared with those from age-matched HCs. Functionality of CMV-specific CD8+ T cells in CLL with respect to cytokine production, cytotoxicity, and immune synapse formation is preserved.


2020 ◽  
Vol 4 (10) ◽  
pp. 2143-2157 ◽  
Author(s):  
Alak Manna ◽  
Timothy Kellett ◽  
Sonikpreet Aulakh ◽  
Laura J. Lewis-Tuffin ◽  
Navnita Dutta ◽  
...  

Abstract Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


Tumor Biology ◽  
2013 ◽  
Vol 34 (4) ◽  
pp. 2031-2039 ◽  
Author(s):  
Farhad Jadidi-Niaragh ◽  
Ghasem Ghalamfarsa ◽  
Mehdi Yousefi ◽  
Mina Hajifaraj Tabrizi ◽  
Fazel Shokri

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Isabel Jiménez ◽  
Bárbara Tazón-Vega ◽  
Pau Abrisqueta ◽  
Juan C. Nieto ◽  
Sabela Bobillo ◽  
...  

Abstract Background Mechanisms driving the progression of chronic lymphocytic leukemia (CLL) from its early stages are not fully understood. The acquisition of molecular changes at the time of progression has been observed in a small fraction of patients, suggesting that CLL progression is not mainly driven by dynamic clonal evolution. In order to shed light on mechanisms that lead to CLL progression, we investigated longitudinal changes in both the genetic and immunological scenarios. Methods We performed genetic and immunological longitudinal analysis using paired primary samples from untreated CLL patients that underwent clinical progression (sampling at diagnosis and progression) and from patients with stable disease (sampling at diagnosis and at long-term asymptomatic follow-up). Results Molecular analysis showed limited and non-recurrent molecular changes at progression, indicating that clonal evolution is not the main driver of clinical progression. Our analysis of the immune kinetics found an increasingly dysfunctional CD8+ T cell compartment in progressing patients that was not observed in those patients that remained asymptomatic. Specifically, terminally exhausted effector CD8+ T cells (T-betdim/−EomeshiPD1hi) accumulated, while the the co-expression of inhibitory receptors (PD1, CD244 and CD160) increased, along with an altered gene expression profile in T cells only in those patients that progressed. In addition, malignant cells from patients at clinical progression showed enhanced capacity to induce exhaustion-related markers in CD8+ T cells ex vivo mainly through a mechanism dependent on soluble factors including IL-10. Conclusions Altogether, we demonstrate that the interaction with the immune microenvironment plays a key role in clinical progression in CLL, thereby providing a rationale for the use of early immunotherapeutic intervention.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Sign in / Sign up

Export Citation Format

Share Document