scholarly journals Absorbing Aerosols and Summer Monsoon Evolution over South Asia: An Observational Portrayal

2008 ◽  
Vol 21 (13) ◽  
pp. 3221-3239 ◽  
Author(s):  
Massimo Bollasina ◽  
Sumant Nigam ◽  
K-M. Lau

Abstract The South Asian haze builds up from December to May, is mostly of anthropogenic origin, and absorbs part of the solar radiation. The influence of interannual variations of absorbing aerosols over the Indo-Gangetic Plain in May on the Indian summer monsoon is characterized by means of an observational analysis. Insight into how the aerosol impact is generated is also provided. It is shown that anomalous aerosol loading in late spring leads to remarkable and large-scale variations in the monsoon evolution. Excessive aerosols in May lead to reduced cloud amount and precipitation, increased surface shortwave radiation, and land surface warming. The June (and July) monsoon anomaly associated with excessive May aerosols is of opposite sign over much of the subcontinent (although with a different pattern) with respect to May. The monsoon strengthens in June (and July). The analysis suggests that the significant large-scale aerosol influence on monsoon circulation and hydroclimate is mediated by the heating of the land surface, pursuant to reduced cloudiness and precipitation in May. The finding of the significant role of the land surface in the realization of the aerosol impact is somewhat novel.

2018 ◽  
Vol 31 (21) ◽  
pp. 8785-8801 ◽  
Author(s):  
Chihchung Chou ◽  
Dongryeol Ryu ◽  
Min-Hui Lo ◽  
Hao-Wei Wey ◽  
Hector M. Malano

From the 1980s, Indian summer monsoon rainfall (ISMR) shows a decreasing trend over north and northwest India, and there was a significant observed reduction in July over central and south India in 1982–2003. The key drivers of the changed ISMR, however, remain unclear. It was hypothesized that the large-scale irrigation development that started in the 1950s has resulted in land surface cooling, which slowed large-scale atmospheric circulation, exerting significant influences on ISMR. To test this hypothesis, a fully coupled model, the CESM v1.0.3, was used with a global irrigation dataset. In this study, spatially varying irrigation-induced feedback mechanisms are investigated in detail at different stages of the monsoon. Results show that soil moisture and evapotranspiration increase significantly over India throughout the summertime because of the irrigation. However, 2-m air temperature shows a significant reduction only in a limited region because the temperature change is influenced simultaneously by surface incoming shortwave radiation and evaporative cooling resulting from the irrigation, especially over the heavily irrigated region. Irrigation also induces a 925-hPa northeasterly wind from 30°N toward the equator. This is opposite to the prevailing direction of the Indian summer monsoon (ISM) wind that brings moist air to India. The modeled rainfall in the irrigated case significantly decreases up to 1.5 mm day−1 over central and north India from July to September. This paper reveals that the irrigation can contribute to both increasing and decreasing the surface temperature via multiple feedback mechanisms. The net effect is to weaken the ISM with the high spatial and temporal heterogeneity.


2020 ◽  
Vol 33 (3) ◽  
pp. 1155-1176 ◽  
Author(s):  
Michael G. Bosilovich ◽  
Franklin R. Robertson ◽  
Paul W. Stackhouse

AbstractAlthough El Niño events each have distinct evolutionary character, they typically provide systematic large-scale forcing for warming and increased drought frequency across the tropical continents. We assess this response in the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis and in a 10-member-model Atmospheric Model Intercomparison Project (AMIP) ensemble. The lagged response (3–4 months) of mean tropical land temperature to El Niño warming in the Pacific Ocean is well represented. MERRA-2 reproduces the patterns of precipitation in the tropical regions, and the AMIP ensemble reproduces some regional responses that are similar to those observed and some regions that are not simulating the response well. Model skill is dependent on event forcing strength and temporal proximity to the peak of the sea surface warming. A composite approach centered on maximum Niño-3.4 SSTs and lag relationships to energy fluxes and transports is used to identify mechanisms supporting tropical land warming. The composite necessarily moderates weather-scale variability of the individual events while retaining the systematic features across all events. We find that reduced continental upward motions lead to reduced cloudiness and more shortwave radiation at the surface, as well as reduced precipitation. The increased shortwave heating at the land surface, along with reduced soil moisture, leads to warmer surface temperature, more sensible heating, and warming of the lower troposphere. The composite provides a broad picture of the mechanisms governing the hydrologic response to El Niño forcing, but the regional and temporal responses can vary substantially for any given event. The 2015/16 El Niño, one of the strongest events, demonstrates some of the forced response noted in the composite, but with shifts in the evolution that depart from the composite, demonstrating the limitations of the composite and individuality of El Niño.


2011 ◽  
Vol 24 (12) ◽  
pp. 3089-3106 ◽  
Author(s):  
Massimo Bollasina ◽  
Sumant Nigam

Abstract The Thar Desert between northwestern India and Pakistan is the most densely populated desert region in the world, and the vast surrounding areas are affected by rapid soil degradation and vegetation loss. The impact of an expanded desert (implemented by changing vegetation type and related greenness fraction, albedo, surface roughness length, emissivity, among others) on the South Asian summer monsoon hydroclimate is investigated by means of 7-month, 4-member ensemble sensitivity experiments with the Weather Research and Forecasting model. It is found that extended desertification significantly affects the monsoon at local and large scales. Locally, the atmospheric water cycle weakens because precipitation, evaporation, and atmospheric moisture convergence all decrease; soil moisture and runoff reduce too. Air temperature cools because of an increase in albedo (the desert makes the area brighter) and a reduction of surface turbulent fluxes; the cooling is partially offset by adiabatic descent, generated to maintain thermodynamic balance and originating at the northern flank of the low-level anticyclone forced by desert subsidence. Regionally, an anomalous northwesterly flow over the Indo-Gangetic Plain weakens the monsoon circulation over northeastern India, causing precipitation to decrease and the formation of an anomalous anticyclone in the region. As a result, the middle troposphere cools because of a decrease in latent heat release, but the ground heats up because of a reduction in cloudiness. At larger scale, the interaction between the anomalous circulation and the mountains leads to an increase in precipitation over the eastern Himalayas and Indochina. The findings of this study reveal that the expansion of the Thar Desert can lead to a pronounced and large-scale impact on summer monsoon hydroclimate, with a potential to redistribute precious water over South Asia.


2012 ◽  
Vol 25 (9) ◽  
pp. 3431-3436 ◽  
Author(s):  
Zhiyan Zuo ◽  
Song Yang ◽  
Arun Kumar ◽  
Renhe Zhang ◽  
Yan Xue ◽  
...  

The large-scale Asian summer monsoon circulation has experienced a weakening tendency in recent decades. Using observed data and output from model experiments with the atmospheric component of the NCEP Climate Forecast System, the authors show that a relatively smaller warming in Asia compared to the surrounding regions may be a plausible reason for this change in the monsoon. Although the surface temperature over Asia has increased, the landmass has become a relative “heat sink” because of the larger warming in other regions of the world. Indeed, over Asia, the vertically integrated tropospheric temperature in the most recent decades is colder than that in the earlier decades, a feature different from the characteristics outside Asia.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Lahouari Bounoua ◽  
Kurtis Thome ◽  
Joseph Nigro

Urbanization is a complex land transformation not explicitly resolved within large-scale climate models. Long-term timeseries of high-resolution satellite data are essential to characterize urbanization within land surface models and to assess its contribution to surface temperature changes. The potential for additional surface warming from urbanization-induced land use change is investigated and decoupled from that due to change in climate over the continental US using a decadal timescale. We show that, aggregated over the US, the summer mean urban-induced surface temperature increased by 0.15 °C, with a warming of 0.24 °C in cities built in vegetated areas and a cooling of 0.25 °C in cities built in non-vegetated arid areas. This temperature change is comparable in magnitude to the 0.13 °C/decade global warming trend observed over the last 50 years caused by increased CO2. We also show that the effect of urban-induced change on surface temperature is felt above and beyond that of the CO2 effect. Our results suggest that climate mitigation policies must consider urbanization feedback to put a limit on the worldwide mean temperature increase.


2016 ◽  
Author(s):  
B. Barret ◽  
B. Sauvage ◽  
Y. Bennouna ◽  
E. Le Flochmoen

Abstract. During the Asian Summer Monsoon, the circulation in the Upper Troposphere-Lower Stratosphere (UTLS) is dominated by the Asian Monsoon Anticyclone (AMA). Pollutants convectively uplifted to the upper troposphere are trapped within this anticyclonic circulation that extends from the Pacific Ocean to the eastern Mediterranean basin. Among the uplifted pollutants are ozone (O3) and its precursors, such as carbon monoxide (CO) and nitrogen oxides (NOx). Many studies based on global modelisation and satellite data have documented the source regions and transport pathways of primary pollutants (CO, HCN) into the AMA. Here, we aim to quantify the O3 budget by taking into consideration anthropogenic and natural sources. We first use CO and O3 data from the Metop-A/IASI sensor to document their tropospheric distributions over Asia, taking advantage of the useful information they provide on the vertical dimension. These satellite data are used together with MOZAIC/IAGOS tropospheric profiles recorded in India to validate the distributions simulated by the global GEOS-Chem chemistry transport model. Over the Asian region, UTLS monthly CO and O3 distributions from IASI and GEOS-Chem display the same large-scale features. UTLS CO columns from GEOS-Chem are in agreement with IASI, with a low bias of 11 ± 9% and a correlation coefficient of 0.70. For O3, the model underestimates IASI UTLS columns over Asia by 14 ± 26% but the correlation between both is high (0.94). GEOS-Chem is further used to quantify the CO and O3 budget through sensitivity simulations. For CO, these simulations confirm that South-Asian anthropogenic emissions have a more important impact on enhanced concentrations within the AMA (∼25 ppbv) than East-Asian emissions (∼10 ppbv). The correlation between enhanced emissions over the Indo–gangetic–Plain and monsoon deep convection is responsible for this larger impact. Consistently, South-Asian anthropogenic NOx emissions also play a larger role in producing O3 within the AMA (∼8 ppbv) than East-Asian emissions (∼5 ppbv) but Asian lightning produced NOx are responsible for the largest O3 production (10–14 ppbv). Stratosphere to Troposphere Exchanges (STE) are also important in transporting O3 in the upper part of the AMA.


2016 ◽  
Vol 48 (5-6) ◽  
pp. 1705-1721 ◽  
Author(s):  
Yanhong Gao ◽  
Linhong Xiao ◽  
Deliang Chen ◽  
Fei Chen ◽  
Jianwei Xu ◽  
...  

1996 ◽  
Vol 101 (D3) ◽  
pp. 7359-7370 ◽  
Author(s):  
Peter J. Wetzel ◽  
Stefania Argentini ◽  
Aaron Boone

2011 ◽  
Vol 29 (7) ◽  
pp. 1247-1252 ◽  
Author(s):  
Anish Kumar M. Nair ◽  
K. Rajeev ◽  
S. Sijikumar ◽  
S. Meenu

Abstract. Using spatial and vertical distributions of clouds derived from multi-year spaceborne observations, this paper presents the characteristics of a significant "pool of inhibited cloudiness" covering an area of >106 km2 between 3–13° N and 77–90° E over the Bay of Bengal (BoB), persisting throughout the Asian summer monsoon season (ASM). Seasonal mean precipitation rate over the "pool" is <3 mm day−1 while that over the surrounding regions is mostly in the range of 6–14 mm day−1. Frequency of occurrence of clouds in this "pool" is ~20–40 % less than that over the surrounding deep convective regions. Zonal and meridional cross sections of the altitude distribution of clouds derived from CloudSat data reveal a vault-like structure at the "pool" with little cloudiness below ~7 km, indicating that this "pool" is almost fully contributed by the substantially reduced or near-absence of low- and middle-level clouds. This suggest the absence of convection in the "pool" region. Spaceborne scatterometer observations show divergence of surface wind at the "pool" and convergence at its surroundings, suggesting the existence of a mini-circulation embedded in the large-scale monsoon circulation. Reanalysis data shows a mini-circulation extending between the surface and ~3 km altitude, but its spatial structure does not match well with that inferred from the above observations. Sea surface at the south BoB during ASM is sufficiently warm to trigger convection, but is inhibited by the subsidence associated with the mini-circulation, resulting in the "pool". This mini-circulation might be a dynamical response of the atmosphere to the substantial spatial gradient of latent heating by large-scale cloudiness and precipitation at the vast and geographically fixed convective zones surrounding the "pool". Subsidence at the "pool" might contribute to the maintenance of convection at the above zones and be an important component of ASM that is overlooked hitherto.


Sign in / Sign up

Export Citation Format

Share Document