tropospheric temperature
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 73)

H-INDEX

46
(FIVE YEARS 4)

MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 503-514
Author(s):  
R. SURESH

The total ozone derived from TOVS data from NOAA 12 satellite through one step physical retrieval algorithm of  International TOVS Processing Package (ITPP) version 5.0 has been used to identify  its diurnal, monthly, latitudinal and longitudinal variability during 1998 over the domain Equator to 26° N / 60-100° E. The linkage of  maximum total ozone with warmer tropopause and lower stratosphere has been re-established. The colder upper tropospheric temperature which is normally associated with maximum ozone concentration throughout the year elsewhere in the world  has also been identified in this study but the relationship gets reversed during southwest  monsoon months(June-September) over the domain considered. The moisture  available in abundance in the lower troposphere gets precipitated due to the convective instability prevailing in the atmosphere during monsoon season and very little moisture is only available for vertical transport into the upper troposphere atop 500 hPa. The latent heat released by the  precipitation processes warms up the middle and upper atmosphere. The warm and dry upper troposphere could be the reason for less depletion of ozone in the upper troposphere during monsoonal  months and this is supported by the positive correlation coefficient prevailing in monsoon season between  total ozone and upper tropospheric (aloft 300 hPa) temperature. The warmness in middle and upper troposphere which is associated with less depletion and/or production of more  ozone in the upper troposphere may  perhaps contribute  for the  higher total ozone during monsoon months than in other seasons over peninsular Indian region.  The minimum concentration is observed during January (226 DU) over 6° N and the maximum (283DU) over 18° N during August. Longitudinal variability is less pronounced than the latitudinal variability.


MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 289-308
Author(s):  
D. R. KOTHAWALE ◽  
K. RUPA KUMAR

In the context of the ever increasing interest in the regional aspects of global warming, understanding the spatio-temporal variations of tropospheric temperature over India is of great importance. The present study, based on the data from 19 well distributed radiosonde stations for the period 1971-2000, examines the seasonal and annual mean temperature variations at the surface and five selected upper levels, viz., 850, 700, 500, 200 and 150 hPa. An attempt has also been made to bring out the association between tropospheric temperature variations over India and the summer monsoon variability, including the role of its major teleconnection parameter, the El Niño/Southern Oscillation (ENSO).   Seasonal and annual mean all-India temperature series are analyzed for surface and five tropospheric levels.  The mean annual cycles of temperature at different tropospheric levels indicate that the pre-monsoon season is slightly warmer than the monsoon season at the surface, 850 hPa and 150 hPa levels, while it is relatively cooler at all intermediate levels.  The mean annual temperature shows a warming of 0.18° C and 0.3° C per 10 years at the surface and 850 hPa, respectively.   Tropospheric temperature anomaly composites of excess (deficient) monsoon rainfall years show pronounced positive (negative) anomalies during the month of May, at all the levels.  The pre-monsoon pressure of Darwin has significant positive correlation with the monsoon temperature at the surface and 850 hPa.


Abstract A dry-core idealized general circulation model with a stratospheric polar vortex in the northern hemisphere is run with a combination of simplified topography and imposed tropospheric temperature perturbations, each located in the northern hemisphere with a zonal wave number of one. The phase difference between the imposed temperature wave and the topography is varied to understand what effect this has on the occurrence of polar vortex displacements. Geometric moments are used to identify the centroid of the polar vortex for the purposes of classifying whether or not the polar vortex is displaced. Displacements of the polar vortex are a response to increased tropospheric wave activity. Compared to a model run with only topography, the likelihood of the polar vortex being displaced increases when the warm region is located west of the topography peak, and decreases when the cold region is west of the topography peak. This response from the polar vortex is due to the modulation of vertically propogating wave activity by the temperature forcing. When the southerly winds on the western side of the topographically forced anticyclone are collocated with warm or cold temperature forcing, the vertical wave activity flux in the troposphere becomes more positive or negative, respectively. This is in line with recent reanalysis studies which showed that anomalous warming west of the surface pressure high, in the climatological standing wave, precedes polar vortex disturbances.


2022 ◽  
Vol 15 (1) ◽  
pp. 199-218
Author(s):  
Xiaodong Wang ◽  
Chun Zhao ◽  
Mingyue Xu ◽  
Qiuyan Du ◽  
Jianqiu Zheng ◽  
...  

Abstract. Domain size can have significant impact on regional modeling results, but few studies examined the sensitivities of simulated aerosol impact to regional domain size. This study investigates the regional modeling sensitivities of aerosol impact on the East Asian summer monsoon (EASM) to domain size. The simulations with two different domain sizes demonstrate consistently that aerosols induce the cooling of the lower troposphere that leads to the anticyclone circulation anomalies and thus the weakening of EASM moisture transport. The aerosol-induced adjustment of monsoonal circulation results in an alternate increase and decrease pattern of precipitation over China. Domain size has a great influence on the simulated meteorological fields. For example, the simulation with larger domain size produces weaker EASM circulation, which also affects aerosol distributions significantly. This leads to the difference of simulated strength and area extent of aerosol-induced changes of lower-tropospheric temperature and pressure, which further results in different distributions of circulation and precipitation anomalies over China. For example, over southeastern China, aerosols induce the increase (decrease) of precipitation from the smaller-domain (larger-domain) simulation. Different domain sizes consistently simulate an aerosol-induced increase in precipitation around 30∘ N over eastern China. This study highlights the important influence of domain size on regional modeling results of aerosol impact on circulation and precipitation, which may not be limited to East Asia. More generally, this study also implies that proper modeling of meteorological fields with appropriate domain size is one of the keys to simulating robust aerosol climatic impact.


MAUSAM ◽  
2022 ◽  
Vol 45 (2) ◽  
pp. 155-160
Author(s):  
P. C. JOSHI ◽  
B. SIMON

Th e NOAA· scries of pol ar urbiting meteorological JalellitC"J cany cnboent an instrumentTOYSOlROS Operational Vertical Sounder). The temperature profile da la from thi! instrument over Pakistan beatlow region and Tibetan pla teau region i5 examined in relatio n to the onset of sout h~ mnruoon OWf Kent. coast.A si,nificanl temperatu re increase in upper troposphere nead y rv.u ·~u in a.1V11ncfO of onset of monsoonh.. been observed.


2021 ◽  
pp. 1-39

Abstract The radiative cooling rate in the tropical upper troposphere is expected to increase as climate warms. Since the tropics are approximately in radiative-convective equilibrium (RCE), this implies an increase in the convective heating rate, which is the sum of the latent heating rate and the eddy heat flux convergence. We examine the impact of these changes on the vertical profile of cloud ice amount in cloud-resolving simulations of RCE. Three simulations are conducted: a control run, a warming run, and an experimental run in which there is no warming but a temperature forcing is imposed to mimic the warming-induced increase in radiative cooling. Surface warming causes a reduction in cloud fraction at all upper tropospheric temperature levels but an increase in the ice mixing ratio within deep convective cores. The experimental run has more cloud ice than the warming run at fixed temperature despite the fact that their latent heating rates are equal, which suggests that the efficiency of latent heating by cloud ice increases with warming. An analytic expression relating the ice-related latent heating rate to a number of other factors is derived and used to understand the model results. This reveals that the increase in latent heating efficiency is driven mostly by 1) the migration of isotherms to lower pressure and 2) a slight warming of the top of the convective layer. These physically robust changes act to reduce the residence time of ice along at any particular temperature level, which tempers the response of the mean cloud ice profile to warming.


2021 ◽  
Author(s):  
Mikhail Belikovich ◽  
Mikhail Kulikov ◽  
Natalya Skalyga ◽  
Evgeny Serov ◽  
Alexander Feigin

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Elżbieta Lasota

Abstract Precise and reliable information on the tropospheric temperature and water vapor profiles play a key role in weather and climate studies. Among the sensors supporting the observations of the troposphere, one can distinguish the Global Navigation Satellite System Radio Occultation (RO) technique, which provides accurate and high-quality meteorological profiles. However, external knowledge about temperature is essential to estimate other physical atmospheric parameters. To overcome this constraint, I trained and evaluated four different machine learning models comprising Artificial Neural Network (ANN) and Random Forest regression algorithms, where no auxiliary meteorological data is needed. To develop the models, I employed 150,000 globally distributed (45°S–45°N) RO profiles between October 2019 and December 2020. Input vectors consisted of bending angle or refractivity profiles from the Formosa Satellite-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 mission together with the month, hour, and latitude of the RO event. While temperature, pressure, and water vapor profiles derived from the modern ERA5 reanalysis and interpolated to the RO location served as the models’ targets. Evaluation on the testing data set revealed a good agreement between all model outputs and ERA5 targets, where slightly better statistics were noted for ANN and refractivity inputs. Vertically averaged root mean square error (RMSE) did not exceed 1.7 K for the temperature and reached around 1.4 hPa and 0.45 hPa for the total and water vapor pressures. Additional validation with 477 co-located radiosonde observations and the operational one-dimensional variational product showed slightly larger discrepancies with the mean RMSE of around 1.9 K, 1.9 hPa, and 0.5 hPa for the temperature, pressure, and water vapor, respectively. Graphical Abstract


2021 ◽  
Vol 2 (4) ◽  
pp. 1093-1110
Author(s):  
Roman Brogli ◽  
Silje Lund Sørland ◽  
Nico Kröner ◽  
Christoph Schär

Abstract. Greenhouse-gas-driven global temperature change projections exhibit spatial variations, meaning that certain land areas will experience substantially enhanced or reduced surface warming. It is vital to understand enhanced regional warming anomalies as they locally increase heat-related risks to human health and ecosystems. We argue that tropospheric lapse-rate changes play a key role in shaping the future summer warming pattern around the globe in mid-latitudes and the tropics. We present multiple lines of evidence supporting this finding based on idealized simulations over Europe, as well as regional and global climate model ensembles. All simulations consistently show that the vertical distribution of tropospheric summer warming is different in regions characterized by enhanced or reduced surface warming. Enhanced warming is projected where lapse-rate changes are small, implying that the surface and the upper troposphere experience similar warming. On the other hand, strong lapse-rate changes cause a concentration of warming in the upper troposphere and reduced warming near the surface. The varying magnitude of lapse-rate changes is governed by the temperature dependence of the moist-adiabatic lapse rate and the available tropospheric humidity. We conclude that tropospheric temperature changes should be considered along with surface processes when assessing the causes of surface warming patterns.


Author(s):  
Manish Jangid ◽  
Amit Kumar Mishra ◽  
Ilan Koren ◽  
Chandan Sarangi ◽  
Krishan Kumar ◽  
...  

Abstract Aerosols play a significant role in regional scale pollution that alters the cloud formation process, radiation budget, and climate. Here, using long-term (2003-2019) observations from multi-satellite and ground-based remote sensors, we show robust aerosol-induced instantaneous daytime lower tropospheric cooling during the pre-monsoon season over the Indian core monsoon region (ICMR). Quantitatively, an average cooling of -0.82±0.11 °C to -1.84±0.25 °C is observed in the lower troposphere. The observed cooling is associated with both aerosol-radiation and aerosol-cloud-radiation interactions processes. The elevated dust and polluted-dust layers cause extinction of the incoming solar radiation, thereby decreasing the lower tropospheric temperature. The aerosol-cloud interactions also contribute to enhancement of cloud fraction which further contributes to the lower tropospheric cooling. The observed cooling results in a stable lower tropospheric structure during polluted conditions, which can also feedback to cloud systems. Our findings suggest that aerosol induced lower tropospheric cooling can strongly affect the cloud distribution and circulation dynamics over the ICMR, a region of immense hydroclimatic importance.


Sign in / Sign up

Export Citation Format

Share Document