Some Influences of Background Flow Conditions on the Generation of Turbulence due to Gravity Wave Breaking above Deep Convection

2008 ◽  
Vol 47 (11) ◽  
pp. 2777-2796 ◽  
Author(s):  
Todd P. Lane ◽  
Robert D. Sharman

Abstract Deep moist convection generates turbulence in the clear air above and around developing clouds, penetrating convective updrafts and mature thunderstorms. This turbulence can be due to shearing instabilities caused by strong flow deformations near the cloud top, and also to breaking gravity waves generated by cloud–environment interactions. Turbulence above and around deep convection is an important safety issue for aviation, and improved understanding of the conditions that lead to out-of-cloud turbulence formation may result in better turbulence avoidance guidelines or forecasting capabilities. In this study, a series of high-resolution two- and three-dimensional model simulations of a severe thunderstorm are conducted to examine the sensitivity of above-cloud turbulence to a variety of background flow conditions—in particular, the above-cloud wind shear and static stability. Shortly after the initial convective overshoot, the above-cloud turbulence and mixing are caused by local instabilities in the vicinity of the cloud interfacial boundary. At later times, when the convection is more mature, gravity wave breaking farther aloft dominates the turbulence generation. This wave breaking is caused by critical-level interactions, where the height of the critical level is controlled by the above-cloud wind shear. The strength of the above-cloud wind shear has a strong influence on the occurrence and intensity of above-cloud turbulence, with intermediate shears generating more extensive regions of turbulence, and strong shear conditions producing the most intense turbulence. Also, more stable above-cloud environments are less prone to turbulence than less stable situations. Among other things, these results highlight deficiencies in current turbulence avoidance guidelines in use by the aviation industry.

1994 ◽  
Vol 47 (6S) ◽  
pp. S113-S117
Author(s):  
Donald P. Delisi ◽  
Timothy J. Dunkerton

Laboratory measurements of gravity wave, critical layer flows are presented. The measurements are obtained in a salt-stratified annular tank, with a vertical shear profile. Internal gravity waves are generated at the floor of the tank and propagate vertically upward into the fluid. At a depth where the phase speed of the wave equals the mean flow speed, defined as a critical level, the waves break down, under the right forcing conditions, generating small scale turbulence. Two cases are presented. In the first case, the wave forcing is a single, monochromatic wave. In this case, the early wave breaking is characterized as Kelvin-Helmholtz breaking at depths below the critical level. Later wave breaking is characterized by weak overturning in the upper part of the tank and regular, internal mixing regions in the lower part of the tank. In the second case, the wave forcing is two monochromatic waves, each propagating with a different phase speed. In this case, the early wave breaking is again Kelvin-Helmholtz in nature, but later wave breaking is characterized by sustained overturning in the upper part of the tank with internal mixing regions in the lower part of the tank. Mean velocity profiles are obtained both before and during the experiments.


2015 ◽  
Vol 33 (4) ◽  
pp. 483-504 ◽  
Author(s):  
M. Ern ◽  
P. Preusse ◽  
M. Riese

Abstract. It is known that atmospheric dynamics in the tropical stratosphere have an influence on higher altitudes and latitudes as well as on surface weather and climate. In the tropics, the dynamics are governed by an interplay of the quasi-biennial oscillation (QBO) and semiannual oscillation (SAO) of the zonal wind. The QBO is dominant in the lower and middle stratosphere, and the SAO in the upper stratosphere/lower mesosphere. For both QBO and SAO the driving by atmospheric waves plays an important role. In particular, the role of gravity waves is still not well understood. In our study we use observations of the High Resolution Dynamics Limb Sounder (HIRDLS) satellite instrument to derive gravity wave momentum fluxes and gravity wave drag in order to investigate the interaction of gravity waves with the SAO. These observations are compared with the ERA-Interim reanalysis. Usually, QBO westward winds are much stronger than QBO eastward winds. Therefore, mainly gravity waves with westward-directed phase speeds are filtered out through critical-level filtering already below the stratopause region. Accordingly, HIRDLS observations show that gravity waves contribute to the SAO momentum budget mainly during eastward wind shear, and not much during westward wind shear. These findings confirm theoretical expectations and are qualitatively in good agreement with ERA-Interim and other modeling studies. In ERA-Interim most of the westward SAO driving is due to planetary waves, likely of extratropical origin. Still, we find in both observations and ERA-Interim that sometimes westward-propagating gravity waves may contribute to the westward driving of the SAO. Four characteristic cases of atmospheric background conditions are identified. The forcings of the SAO in these cases are discussed in detail, supported by gravity wave spectra observed by HIRDLS. In particular, we find that the gravity wave forcing of the SAO cannot be explained by critical-level filtering alone; gravity wave saturation without critical levels being reached is also important.


2010 ◽  
Vol 67 (9) ◽  
pp. 2854-2870 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Dehai Luo

Abstract This study examines the relationship between intraseasonal southern annular mode (SAM) events and the El Niño–Southern Oscillation (ENSO) using daily 40-yr ECMWF Re-Analysis (ERA-40) data. The data coverage spans the years 1979–2002, for the austral spring and summer seasons. The focus of this study is on the question of why positive SAM events dominate during La Niña and negative SAM events during El Niño. A composite analysis is performed on the zonal-mean zonal wind, Eliassen–Palm fluxes, and two diagnostic variables: the meridional potential vorticity gradient, a zonal-mean quantity that is used to estimate the likelihood of wave breaking, and the wave breaking index (WBI), which is used to evaluate the strength of the wave breaking. The results of this investigation suggest that the background zonal-mean flow associated with La Niña (El Niño) is preconditioned for strong (weak) anticyclonic wave breaking on the equatorward side of the eddy-driven jet, the type of wave breaking that is found to drive positive (negative) SAM events. A probability density function analysis of the WBI, for both La Niña and El Niño, indicates that strong anticyclonic wave breaking takes place much more frequently during La Niña and weak anticyclonic wave breaking during El Niño. It is suggested that these wave breaking characteristics, and their dependency on the background flow, can explain the strong preference for SAM events of one phase during ENSO. The analysis also shows that austral spring SAM events that coincide with ENSO are preceded by strong stratospheric SAM anomalies and then are followed by a prolonged period of wave breaking that lasts for approximately 30 days. These findings suggest that the ENSO background flow also plays a role in the excitation of stratospheric SAM anomalies and that the presence of these stratospheric SAM anomalies in turn excites and then maintains the tropospheric SAM anomalies via a positive eddy feedback.


2006 ◽  
Vol 6 (5) ◽  
pp. 1185-1200 ◽  
Author(s):  
T. J. Garrett ◽  
J. Dean-Day ◽  
C. Liu ◽  
B. Barnett ◽  
G. Mace ◽  
...  

Abstract. Pileus clouds form where humid, vertically stratified air is mechanically displaced ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. The study examines in detail in-situ measurements from off the coast of Honduras during the July 2002 CRYSTAL-FACE experiment that showed an example of TTL cirrus associated with, and penetrated by, deep convection. The TTL cirrus was enriched with total water compared to its surroundings, but was composed of extremely small ice crystals with effective radii between 2 and 4 μm. Through gravity wave analysis, and intercomparison of measured and simulated cloud microphysics, it is argued that the TTL cirrus originated neither from convectively-forced gravity wave motions nor environmental mixing alone. Rather, it is hypothesized that a combination of these two processes was involved in which, first, a pulse of convection forced pileus cloud to form from TTL air; second, the pileus layer was punctured by the convective pulse and received larger ice crystals through interfacial mixing; third, the addition of this condensate inhibited evaporation of the original pileus ice crystals where a convectively forced gravity wave entered its warm phase; fourth, through successive pulses of convection, a sheet of TTL cirrus formed. While the general incidence and longevity of pileus cloud remains unknown, in-situ measurements, and satellite-based Microwave Limb Sounder retrievals, suggest that much of the tropical TTL is sufficiently humid to be susceptible to its formation. Where these clouds form and persist, there is potential for an irreversible repartition from water vapor to ice at cold temperatures.


2010 ◽  
Vol 67 (3) ◽  
pp. 694-712 ◽  
Author(s):  
Ji-Young Han ◽  
Jong-Jin Baik

Abstract Convectively forced mesoscale flows in a shear flow with a critical level are theoretically investigated by obtaining analytic solutions for a hydrostatic, nonrotating, inviscid, Boussinesq airflow system. The response to surface pulse heating shows that near the center of the moving mode, the magnitude of the vertical velocity becomes constant after some time, whereas the magnitudes of the vertical displacement and perturbation horizontal velocity increase linearly with time. It is confirmed from the solutions obtained in present and previous studies that this result is valid regardless of the basic-state wind profile and dimension. The response to 3D finite-depth steady heating representing latent heating due to cumulus convection shows that, unlike in two dimensions, a low-level updraft that is necessary to sustain deep convection always occurs at the heating center regardless of the intensity of vertical wind shear and the heating depth. For deep heating across a critical level, little change occurs in the perturbation field below the critical level, although the heating top height increases. This is because downward-propagating gravity waves induced by the heating above, but not near, the critical level can hardly affect the flow response field below the critical level. When the basic-state wind backs with height, the vertex of V-shaped perturbations above the heating top points to a direction rotated a little clockwise from the basic-state wind direction. This is because the V-shaped perturbations above the heating top is induced by upward-propagating gravity waves that have passed through the layer below where the basic-state wind direction is clockwise relative to that above.


2005 ◽  
Vol 62 (7) ◽  
pp. 2394-2413 ◽  
Author(s):  
Charles McLandress ◽  
John F. Scinocca

Abstract A comparison is undertaken of the response of a general circulation model (GCM) to the nonorographic gravity wave drag parameterizations of Hines, Warner and McIntyre, and Alexander and Dunkerton. The analysis is restricted to a comparison of each parameterization’s nonlinear dissipation mechanism since, in principle, this is the only component that differs between the schemes. This is achieved by developing a new, more general parameterization that can represent each of these dissipation mechanisms, while keeping all other aspects of the problem identical. The GCM simulations reveal differences in the climatological response to the three dissipation mechanisms. These differences are documented for both tropopause and surface launch elevations of the parameterized waves. The simulations also reveal systematic differences in the height at which momentum is deposited. This behavior is investigated further in a set of experiments designed to reduce these systematic differences, while leaving the details of the dissipation mechanisms unaltered. These sensitivity experiments demonstrate that it is possible to obtain nearly identical responses from all three mechanisms, which indicates that the GCM response is largely insensitive to the precise details of the dissipation mechanisms. This finding is supported by an additional experiment in which the nonlinear dissipation mechanisms are turned off and critical-level filtering is left to act as the only source of dissipation. In this experiment, critical-level filtering effectively replaces the nonlinear dissipation mechanism, producing a nearly identical response. The results of this study suggest that climate modeling efforts would potentially benefit more from the refinement of other aspects of the parameterization problem, such as the properties of the launch spectrum, than they have benefited from the refinement of dissipation mechanisms.


2005 ◽  
Vol 62 (5) ◽  
pp. 1480-1496 ◽  
Author(s):  
Zachary A. Eitzen ◽  
David A. Randall

Abstract This study uses a numerical model to simulate deep convection both in the Tropics over the ocean and the midlatitudes over land. The vertical grid that was used extends into the stratosphere, allowing for the simultaneous examination of the convection and the vertically propagating gravity waves that it generates. A large number of trajectories are used to evaluate the behavior of tracers in the troposphere, and it is found that the tracers can be segregated into different types based upon their position in a diagram of normalized vertical velocity versus displacement. Conditional sampling is also used to identify updrafts in the troposphere and calculate their contribution to the kinetic energy budget of the troposphere. In addition, Fourier analysis is used to characterize the waves in the stratosphere; it was found that the waves simulated in this study have similarities to those observed and simulated by other researchers. Finally, this study examines the wave energy flux as a means to provide a link between the tropospheric behavior of the convection and the strength of the waves in the stratosphere.


Sign in / Sign up

Export Citation Format

Share Document