scholarly journals A Precipitation Climatology and Dataset Intercomparison for the Western United States

2008 ◽  
Vol 9 (5) ◽  
pp. 825-841 ◽  
Author(s):  
Kristen J. Guirguis ◽  
Roni Avissar

Abstract This paper presents the results of a regionalization study of the precipitation climate of the western United States using principal component analysis. Past eigen-based regionalization studies have relied on rain gauge networks, which is restrictive because rain gauge coverage is sparse, especially over complex terrain that exists in the western United States. Here, the use of alternate data products is examined by conducting a comparative regionalization using nine precipitation datasets used in hydrometeorological research. Five unique precipitation climates are identified within the western United States, which have centers and boundaries that are physically reasonable and that highlight the relationship between the precipitation climatology and local topography. Using the congruence coefficient as the measure of similarity between principal component solutions, the method is found to be generally stable across datasets. The exception is the National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis 2, which frequently demonstrates only borderline agreement with the other datasets. The loading pattern differences among datasets are shown to be primarily a result of data differences in the representation of (i) precipitation over the Rocky Mountains, (ii) the eastward wet-to-dry precipitation gradient that occurs during the cold season, (iii) the magnitude and spatial extent of the North American monsoon signal, and (iv) precipitation in the desert southwest during spring and summer. Sensitivity tests were conducted to determine whether the spatial resolution and temporal domain of the input data would dramatically affect the solution, and these results show the methodology to be stable to differences in spatial/temporal data features. The results suggest that alternate data products can be used in regionalization studies, which has applications for rain gauge installation and planning, climate research, and numerical modeling experiments.

2007 ◽  
Vol 20 (9) ◽  
pp. 1680-1692 ◽  
Author(s):  
John E. Janowiak ◽  
Valery J. Dagostaro ◽  
Vernon E. Kousky ◽  
Robert J. Joyce

Abstract Summertime rainfall over the United States and Mexico is examined and is compared with forecasts from operational numerical prediction models. In particular, the distribution of rainfall amounts is examined and the diurnal cycle of rainfall is investigated and compared with the model forecasts. This study focuses on a 35-day period (12 July–15 August 2004) that occurred amid the North American Monsoon Experiment (NAME) field campaign. Three-hour precipitation forecasts from the numerical models were validated against satellite-derived estimates of rainfall that were adjusted by daily rain gauge data to remove bias from the remotely sensed estimates. The model forecasts that are evaluated are for the 36–60-h period after the model initial run time so that the effects of updated observational data are reduced substantially and a more direct evaluation of the model precipitation parameterization can be accomplished. The main findings of this study show that the effective spatial resolution of the model-generated precipitation is considerably more coarse than the native model resolution. On a national scale, the models overforecast the frequency of rainfall events in the 1–75 mm day−1 range and underforecast heavy events (>85 mm day−1). The models also have a diurnal cycle that peaks 3–6 h earlier than is observed over portions of the eastern United States and the NAME tier-1 region. Time series and harmonic analysis are used to identify where the models perform well and poorly in characterizing the amplitude and phase of the diurnal cycle of precipitation.


2020 ◽  
Vol 33 (9) ◽  
pp. 3771-3785
Author(s):  
Dmitri A. Kalashnikov ◽  
Paul C. Loikith ◽  
Arielle J. Catalano ◽  
Duane E. Waliser ◽  
Huikyo Lee ◽  
...  

AbstractA 30-yr climatology of lightning days and associated synoptic meteorological patterns are characterized across the interior western United States (WUS). Locally centered composite analyses show preferred synoptic meteorological patterns with positive 500-hPa geopotential height anomalies located to the northeast and negative sea level pressure anomalies to the northwest and collocated with local lightning days. Variations in preferred patterns for local lightning days are seen across the interior WUS. Areas not commonly affected by the North American monsoon system including the western Great Basin and northern Rocky Mountains show higher-amplitude anomalies of geopotential height, moisture, and midtropospheric instability patterns suggesting the importance of episodic midlatitude dynamics to lightning days in such locations. By contrast, locations closer to the core of the North American monsoon show weaker anomalies, likely reflecting the prevalence of favorable mesoscale dynamics key to lightning production during warm-season months in locations in the interior Southwest. Meteorological patterns for select locations are explored in more detail and two case studies of notably active lightning events are presented. Results from this observational analysis provide a foundation for evaluating meteorological conditions on lightning days in climate model simulations for the interior WUS.


1999 ◽  
Vol 26 (14) ◽  
pp. 2171-2174 ◽  
Author(s):  
Terje K. Berntsen ◽  
Sigrún Karlsdóttir ◽  
Daniel A. Jaffe

2020 ◽  
Vol 35 (4) ◽  
pp. 1221-1234
Author(s):  
Matthew B. Switanek ◽  
Joseph J. Barsugli ◽  
Michael Scheuerer ◽  
Thomas M. Hamill

AbstractMonthly tropical sea surface temperature (SST) data are used as predictors to make statistical forecasts of cold season (November–March) precipitation and temperature for the contiguous United States. Through the use of the combined-lead sea surface temperature (CLSST) model, predictive information is discovered not just in recent SSTs but also from SSTs up to 18 months prior. We find that CLSST cold season forecast anomaly correlation skill is higher than that of the North American Multimodel Ensemble (NMME) and the SEAS5 model from the European Centre for Medium-Range Weather Forecasts (ECMWF) when averaged over the United States for both precipitation and 2-m air temperature. The precipitation forecast skill obtained by CLSST in parts of the Intermountain West is of particular interest because of its implications for water resources. In those regions, CLSST dramatically improves the skill over that of the dynamical model ensembles, which can be attributed to a robust statistical response of precipitation in this region to SST anomalies from the previous year in the tropical Pacific.


2008 ◽  
Vol 21 (11) ◽  
pp. 2371-2383 ◽  
Author(s):  
Qi Hu ◽  
Song Feng

Abstract The North American summer monsoon holds the key to understanding warm season rainfall variations in the region from northern Mexico to the Southwest and the central United States. Studies of the monsoon have pictured mosaic submonsoonal regions and different processes influencing monsoon variations. Among the influencing processes is the “land memory,” showing primarily the influence of the antecedent winter season precipitation (snow) anomalies in the Northwest on summer rainfall anomalies in the Southwest. More intriguingly, the land memory has been found to vary at the multidecadal time scale. This memory change may actually reflect multidecadal variations of the atmospheric circulation in the North American monsoon region. This notion is examined in this study by first establishing the North American monsoon regimes from relationships of summer rainfall variations in central and western North America, and then quantifying their variations at the multidecadal scale in the twentieth century. Results of these analyses show two monsoon regimes: one featured with consistent variations in summer rainfall in west Mexico and the Southwest and an opposite variation pattern in the central United States, and the other with consistent rainfall variations in west Mexico and the central United States but different from the variations in the southwest United States. These regimes have alternated at multidecadal scales in the twentieth century. This alternation of the regimes is found to be in phase with the North Atlantic Multidecadal Oscillation (AMO). In warm and cold phases of the AMO, distinctive circulation anomalies are found in central and western North America, where lower than average pressure prevailed in the warm phase and the opposite anomaly in the cold phase. Associated wind anomalies configured different patterns for moisture transport and may have contributed to the development and variation of the monsoon regimes. These results indicate that investigations of the effects of AMO and its interaction with the North Pacific circulations could lead to a better understanding of the North American monsoon variations.


2016 ◽  
Vol 144 (7) ◽  
pp. 2695-2718 ◽  
Author(s):  
Salvatore Pascale ◽  
Simona Bordoni

Abstract In this study ERA-Interim data are used to study the influence of Gulf of California (GoC) moisture surges on the North American monsoon (NAM) precipitation over Arizona and western New Mexico (AZWNM), as well as the connection with larger-scale tropical and extratropical variability. To identify GoC surges, an improved index based on principal component analyses of the near-surface GoC winds is introduced. It is found that GoC surges explain up to 70% of the summertime rainfall over AZWNM. The number of surges that lead to enhanced rainfall in this region varies from 4 to 18 per year and is positively correlated with annual summertime precipitation. Regression analyses are performed to explore the relationship between GoC surges, AZWNM precipitation, and tropical and extratropical atmospheric variability at the synoptic (2–8 days), quasi-biweekly (10–20 days), and subseasonal (25–90 days) time scales. It is found that tropical and extratropical waves, responsible for intrusions of moist tropical air into midlatitudes, interact on all three time scales, with direct impacts on the development of GoC surges and positive precipitation anomalies over AZWNM. Strong precipitation events in this region are, however, found to be associated with time scales longer than synoptic, with the quasi-biweekly and subseasonal modes playing a dominant role in the occurrence of these more extreme events.


Sign in / Sign up

Export Citation Format

Share Document