Oceanic characteristics of the Holocene are used to understand climatic patterns and phenomena that affect marine and human communities. Likewise, past marine conditions can be reconstructed from surface sea temperature (SST), using stable oxygen isotopes in bivalve shells. The objective of this study was to calculate Holocene summer SSTs for La Paz Bay, by analyzing δ18O of 14C dated bivalve shells ( Chione californiensis) from a Holocene camp site located in Cañada de La Enfermería, Baja California Sur, México. Aragonite was extracted from the shells’ umbo, representing the summer growth season during the first year of life. δ18O value of C. californiensis is −1.9 ± 0.1‰ at present, and varied between −1.3‰ and −2.6‰ during the last 9 ky. In 9469 BP, 8396 BP, and 7708 BP, δ18O values were similar to those of the present. In 7857 BP, 7805 BP, and 7804 BP, δ18O was 18O depleted (0.6–0.9‰), indicating warmer summer SSTs versus the present. In 7070 BP, 6945 BP, and 2087 BP, δ18O was enriched in 18O (0.3–0.4‰), suggesting colder SSTs versus the present. This study coincides with other paleotemperature studies for the region and allows us to address the effect of changing SST on this marine resource, its use by human communities of the past, and its effects on human presence in the area with respect to climate variability.