scholarly journals Observed Interannual Variability of the Florida Current: Wind Forcing and the North Atlantic Oscillation

2009 ◽  
Vol 39 (3) ◽  
pp. 721-736 ◽  
Author(s):  
Pedro N. DiNezio ◽  
Lewis J. Gramer ◽  
William E. Johns ◽  
Christopher S. Meinen ◽  
Molly O. Baringer

Abstract The role of wind stress curl (WSC) forcing in the observed interannual variability of the Florida Current (FC) transport is investigated. Evidence is provided for baroclinic adjustment as a physical mechanism linking interannual changes in WSC forcing and changes in the circulation of the North Atlantic subtropical gyre. A continuous monthly time series of FC transport is constructed using daily transports estimated from undersea telephone cables near 27°N in the Straits of Florida. This 25-yr-long time series is linearly regressed against interannual WSC variability derived from the NCEP–NCAR reanalysis. The results indicate that a substantial fraction of the FC transport variability at 3–12-yr periods is explained by low-frequency WSC variations. A lagged regression analysis is performed to explore hypothetical adjustment times of the wind-driven circulation. The estimated lag times are at least 2 times faster than those predicted by linear beta-plane planetary wave theory. Possible reasons for this discrepancy are discussed within the context of recent observational and theoretical developments. The results are then linked with earlier findings of a low-frequency anticorrelation between FC transport and the North Atlantic Oscillation (NAO) index, showing that this relationship could result from the positive (negative) WSC anomalies that develop between 20° and 30°N in the western North Atlantic during high (low) NAO phases. Ultimately, the observed role of wind forcing on the interannual variability of the FC could represent a benchmark for current efforts to monitor and predict the North Atlantic circulation.

2019 ◽  
Vol 32 (22) ◽  
pp. 7697-7712 ◽  
Author(s):  
Yu Nie ◽  
Hong-Li Ren ◽  
Yang Zhang

Abstract Considerable progress has been made in understanding the internal eddy–mean flow feedback in the subseasonal variability of the North Atlantic Oscillation (NAO) during winter. Using daily atmospheric and oceanic reanalysis data, this study highlights the role of extratropical air–sea interaction in the NAO variability during autumn when the daily sea surface temperature (SST) variability is more active and eddy–mean flow interactions are still relevant. Our analysis shows that a horseshoe-like SST tripolar pattern in the North Atlantic Ocean, marked by a cold anomaly in the Gulf Stream and two warm anomalies to the south of the Gulf Stream and off the western coast of northern Europe, can induce a quasi-barotropic NAO-like atmospheric response through eddy-mediated processes. An initial southwest–northeast tripolar geopotential anomaly in the North Atlantic forces this horseshoe-like SST anomaly tripole. Then the SST anomalies, through surface heat flux exchange, alter the spatial patterns of the lower-tropospheric temperature and thus baroclinicity anomalies, which are manifested as the midlatitude baroclinicity shifted poleward and reduced baroclinicity poleward of 70°N. In response to such changes of the lower-level baroclinicity, anomalous synoptic eddy generation, eddy kinetic energy, and eddy momentum forcing in the midlatitudes all shift poleward. Meanwhile, the 10–30-day low-frequency anticyclonic wave activities in the high latitudes decrease significantly. We illustrate that both the latitudinal displacement of midlatitude synoptic eddy activities and intensity variation of high-latitude low-frequency wave activities contribute to inducing the NAO-like anomalies.


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2008 ◽  
Vol 21 (12) ◽  
pp. 2990-3001 ◽  
Author(s):  
Anastasios A. Tsonis ◽  
Kyle L. Swanson ◽  
Geli Wang

Abstract In a recent application of networks to 500-hPa data, it was found that supernodes in the network correspond to major teleconnection. More specifically, in the Northern Hemisphere a set of supernodes coincides with the North Atlantic Oscillation (NAO) and another set is located in the area where the Pacific–North American (PNA) and the tropical Northern Hemisphere (TNH) patterns are found. It was subsequently suggested that the presence of atmospheric teleconnections make climate more stable and more efficient in transferring information. Here this hypothesis is tested by examining the topology of the complete network as well as of the networks without teleconnections. It is found that indeed without teleconnections the network becomes less stable and less efficient in transferring information. It was also found that the pattern chiefly responsible for this mechanism in the extratropics is the NAO. The other patterns are simply a linear response of the activity in the tropics and their role in this mechanism is inconsequential.


2011 ◽  
Vol 24 (24) ◽  
pp. 6515-6527 ◽  
Author(s):  
Xuhua Cheng ◽  
Shang-Ping Xie ◽  
Hiroki Tokinaga ◽  
Yan Du

Abstract Interannual variability of high-wind occurrence over the North Atlantic is investigated based on observations from the satellite-borne Special Sensor Microwave Imager (SSM/I). Despite no wind direction being included, SSM/I data capture major features of high-wind frequency (HWF) quite well. Climatology maps show that HWF is highest in winter and is close to zero in summer. Remarkable interannual variability of HWF is found in the vicinity of the Gulf Stream, over open sea south of Iceland, and off Cape Farewell, Greenland. On interannual scales, HWF south of Iceland has a significant positive correlation with the North Atlantic Oscillation (NAO). An increase in the mean westerlies and storm-track intensity during a positive NAO event cause HWF to increase in this region. In the vicinity of the Gulf Stream, HWF is significantly correlated with the difference between sea surface temperature and surface air temperature (SST − SAT), indicative of the importance of atmospheric instability. Cross-frontal wind and an SST gradient are important for the instability of the marine atmospheric boundary layer on the warm flank of the SST front. Off Cape Farewell, high wind occurs in both westerly and easterly tip jets. Quick Scatterometer (QuikSCAT) data show that variability in westerly (easterly) HWF off Cape Farewell is positively (negatively) correlated with the NAO.


Author(s):  
Thomas Önskog ◽  
Christian L. E. Franzke ◽  
Abdel Hannachi

Abstract. The North Atlantic Oscillation (NAO) is the dominant mode of climate variability over the North Atlantic basin and has a significant impact on seasonal climate and surface weather conditions. This is the result of complex and nonlinear interactions between many spatio-temporal scales. Here, the authors study a number of linear and nonlinear models for a station-based time series of the daily winter NAO index. It is found that nonlinear autoregressive models, including both short and long lags, perform excellently in reproducing the characteristic statistical properties of the NAO, such as skewness and fat tails of the distribution, and the different timescales of the two phases. As a spin-off of the modelling procedure, we can deduce that the interannual dependence of the NAO mostly affects the positive phase, and that timescales of 1 to 3 weeks are more dominant for the negative phase. Furthermore, the statistical properties of the model make it useful for the generation of realistic climate noise.


2011 ◽  
Vol 8 (6) ◽  
pp. 11233-11275
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Climate change is one of the issues most debated by the scientific community with a special focus to the combined effects of anthropogenic modifications of the atmosphere and the natural climatic cycles. Various scenarios have been formulated in order to forecast the global atmospheric circulation and consequently the variability of the global distribution of air temperature and rainfall. The effects of climate change have been analysed with respect to the risks of desertification, droughts and floods, remaining mainly limited to the atmospheric and surface components of the hydrologic cycle. Consequently the impact of the climate change on the recharge of regional aquifers and on the groundwater circulation is still a challenging topic especially in those areas whose aqueduct systems depend basically on springs or wells, such as the Campania region (Southern Italy). In order to analyse the long-term climatic variability and its influence on groundwater circulation, we analysed decadal patterns of precipitation, air temperature and spring discharges in the Campania region (Southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, in the period from 1921 to 2010, choosing 18 rain gauges and 9 air temperature stations among those with the most continuous functioning as well as arranged in a homogeneous spatial distribution. Moreover, for the same period, we gathered the time series of the winter NAO index (December to March mean) and of the discharges of the Sanità spring, belonging to an extended carbonate aquifer (Cervialto Mount) located in the central-eastern area of the Campania region, as well as of two other shorter time series of spring discharges. The hydrogeological features of this aquifer, its relevance due to the feeding of an important regional aqueduct system, as well as the unique availability of a long-lasting time series of spring discharges, allowed us to consider it as an ideal test site, representative of the other carbonate aquifers in the Campania region. The time series of regional normalised indexes of mean annual precipitation, mean annual air temperature and mean annual effective precipitation, as well as the time series of the normalised annual discharge index were calculated. Different methods were applied to analyse the time series: long-term trend analysis, through smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes has highlighted long-term complex periodicities, strongly correlated with the winter NAO index. Moreover, we also found robust correlations among precipitation indexes and the annual discharge index, as well as between the latter and the NAO index itself. Although the effects of the North Atlantic Oscillation had already been proved on long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results obtained appear original because they establish a link between a large-scale atmospheric cycle and the groundwater circulation of regional aquifers. Therefore, we demonstrated that the winter NAO index can be considered as an effective proxy to forecast the decadal variability of groundwater circulation in Mediterranean areas and in estimating critical scenarios for the feeding of aqueduct systems.


Sign in / Sign up

Export Citation Format

Share Document