the north atlantic oscillation
Recently Published Documents


TOTAL DOCUMENTS

1001
(FIVE YEARS 204)

H-INDEX

94
(FIVE YEARS 8)

Hydrobiologia ◽  
2022 ◽  
Author(s):  
Gary Free ◽  
Mariano Bresciani ◽  
Monica Pinardi ◽  
Steef Peters ◽  
Marnix Laanen ◽  
...  

AbstractSatellite data from the Climate Change Initiative (CCI) lakes project were used to examine the influence of climate on chlorophyll-a (Chl-a). Nonparametric multiplicative regression and machine learning were used to explain Chl-a concentration trend and dynamics. The main parameters of importance were seasonality, interannual variation, lake level, water temperature, the North Atlantic Oscillation, and antecedent rainfall. No evidence was found for an earlier onset of the summer phytoplankton bloom related to the earlier onset of warmer temperatures. Instead, a curvilinear relationship between Chl-a and the temperature length of season above 20°C (LOS) was found with longer periods of warmer temperature leading to blooms of shorter duration. We suggest that a longer period of warmer temperatures in the summer may result in earlier uptake of nutrients or increased calcite precipitation resulting in a shortening of the duration of phytoplankton blooms. The current scenario of increasing LOS of temperature with climate change may lead to an alteration of phytoplankton phenological cycles resulting in blooms of shorter duration in lakes where nutrients become limiting. Satellite-derived information on lake temperature and Chl-a concentration proved essential in detecting trends at appropriate resolution over time.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
István Gábor Hatvani ◽  
Dániel Topál ◽  
Eric Ruggieri ◽  
Zoltán Kern

Structural changes, or changepoints, coinciding in multiple ice core records over the Greenland Ice Sheet (GrIS) may reflect a widespread response of the GrIS to atmospheric forcing. Thus, to better understand how atmospheric circulation may regulate sudden changes in δ18O of Greenland precipitation, we seek synchronous changepoints occurring in ice core-derived δ18O time series across the GrIS and in the North Atlantic Oscillation (NAO) over the past millennium. By utilizing a Bayesian changepoint detection method, four changepoint horizons were revealed: at the beginning of the 20th century, in the late-15th century, and around the turn of the 11th and 10th centuries. Although the changepoints in ice core δ18O records exhibited distinctive spatial arrangements in each horizon, all corresponded to changepoints in the NAO, indicative of a consistent atmospheric influence on GrIS surface changes over the past millennium.


Author(s):  
Yuhji Kuroda ◽  
Kunihiko Kodera ◽  
Kohei Yoshida ◽  
Seiji Yukimoto ◽  
Lesley Gray

2021 ◽  
Vol 40 ◽  
Author(s):  
Fabian E.Z. Ercan ◽  
Daan Blok ◽  
Stef Weijers ◽  
Astrid Odé ◽  
Friederike Wagner-Cremer

The North Atlantic Oscillation (NAO) determines wind speed and direction, seasonal heat, moisture transport, storm tracks, cloudiness and sea-ice cover through atmospheric mass balance shifts between the Arctic and the subtropical Atlantic. The NAO is characterized by the typical, yet insufficiently understood, seesaw pattern of warmer winter and spring temperatures over Scandinavia and cooler temperatures over Greenland during the positive phase of the NAO, and vice versa during the negative phase. We tested the potential to reconstruct NAO variation beyond the meteorological record through the application of a microphenological proxy. We measured the Undulation Index (UI) in Betula nana epidermal cells from herbarium leaf samples and fossil peat fragments dating back to 1865—exceeding most meteorological records in the Arctic—to estimate imprints of spring thermal properties and NAO in Greenland and Finland. We found negative relations between Greenland UI and late winter, spring and early summer NAO, and mostly positive, but not significant, relations between Finland UI and NAO in years with pronounced NAO expression. The direction of the UI response in this common circumpolar species is, therefore, likely in line with the NAO seesaw effect, with leaf development response to NAO fluctuations in northern Europe opposing the response in Greenland and vice versa. Increased knowledge of the UI response to climate may contribute to understanding ecological properties of key Arctic species, whilst additionally providing a proxy for NAO dynamics.


Climate ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 173
Author(s):  
Antoine Hochet ◽  
Guillaume Dodet ◽  
Fabrice Ardhuin ◽  
Mark Hemer ◽  
Ian Young

Long-term changes of wind-generated ocean waves have important consequences for marine engineering, coastal management, ship routing, and marine spatial planning. It is well-known that the multi-annual variability of wave parameters in the North Atlantic is tightly linked to natural fluctuations of the atmospheric circulation, such as the North Atlantic Oscillation. However, anthropogenic climate change is also expected to influence sea states over the long-term through the modification of atmospheric and ocean circulation and melting of sea ice. Due to the relatively short duration of historical sea state observations and the significant multi-decadal variability in the sea state signal, disentangling the anthropogenic signal from the natural variability is a challenging task. In this article, the literature on inter-annual to multi-decadal variability of sea states in the North Atlantic is reviewed using data from both observations and model reanalysis.


2021 ◽  
Author(s):  
Amar Halifa-Marín ◽  
Miguel Ángel Torres-Vázquez ◽  
Enrique Pravia-Sarabia ◽  
Marc Lemus-Cánovas ◽  
Juan Pedro Montávez ◽  
...  

Abstract. A significant abrupt decrease of Winter Precipitation (WP) has been noticed in the Iberian Peninsula since the 1980s related to atmospheric drivers. This contribution assesses the long-term variability of water resources based on a multivariate-driven approach. For this purpose, the novel dataset of Near Natural Water Inflows to Reservoirs of Spain (NENWIRES) was created. Results confirm that Winter Water Inflows (WWI) have been modulated by the sudden decline in WP. These drastic reductions of WP/WWI were mainly controlled by the enhancement of the positive phase of the North Atlantic Oscillation (NAOi+). Nonetheless, our results also highlight the anthropogenic/physical causes contributing to the 1980s shift in the hydroclimate series. The rise of temperature, the cropland abandonment and forest extension provoked evapotranspiration gains and run-off weakening. NENWIRES most humid catchments registered the decrease of WWI promoted by NAOi+ persistence/frequency, while the land greening-up and ET rises explain the WWI losses in the Iberian semiarid environments. This contribution sheds some light on the recent debate about magnitude/drivers of streamflow declining over southern Europe. Therefore, it might help water planning with the goal of mitigating the climate change impacts affecting the water cycle.


2021 ◽  
Author(s):  
Elena Vyshkvarkova ◽  
Olga Sukhonos

Abstract The spatial distribution of compound extremes of air temperature and precipitation was studied over the territory of Eastern Europe for the period 1950–2018 during winter and spring. Using daily data on air temperature and precipitation, we calculated the frequency and trends of the four indices – cold/dry, cold/wet, warm/dry and warm/wet. Also, we studying the connection between these indices and large-scale processes in the ocean-atmosphere system such as North Atlantic Oscillation, East Atlantic Oscillation and Scandinavian Oscillation. The results have shown that positive trends in the region are typical of the combinations with the temperatures above the 75th percentile, i.e., the warm extremes in winter and spring. Negative trends were obtained for the cold extremes. Statistically significant increase in the number of days with warm extremes was observed in the northern parts of the region in winter and spring. The analysis of the impacts of the large-scale processes in oceans-atmosphere system showed that the North Atlantic Oscillation index has a strong positive and statistically significant correlation with the warm indices of compound extremes in the northern part of Eastern Europe in winter, while the Scandinavian Oscillation shows the opposite picture.


Sign in / Sign up

Export Citation Format

Share Document