scholarly journals A Variational Approach for Retrieving Raindrop Size Distribution from Polarimetric Radar Measurements in the Presence of Attenuation

2013 ◽  
Vol 52 (1) ◽  
pp. 169-185 ◽  
Author(s):  
Qing Cao ◽  
Guifu Zhang ◽  
Ming Xue

AbstractThis study presents a two-dimensional variational approach to retrieving raindrop size distributions (DSDs) from polarimetric radar data in the presence of attenuation. A two-parameter DSD model, the constrained-gamma model, is used to represent rain DSDs. Three polarimetric radar measurements—reflectivity ZH, differential reflectivity ZDR, and specific differential phase KDP—are optimally used to correct for the attenuation and retrieve DSDs by taking into account measurement error effects. Retrieval results with simulated data demonstrate that the proposed algorithm performs well. Applications to real data collected by the X-band Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) radars and the C-band University of Oklahoma–Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) also demonstrate the efficacy of this approach.

2018 ◽  
Vol 33 (5) ◽  
pp. 1477-1495 ◽  
Author(s):  
Darrel M. Kingfield ◽  
Joseph C. Picca

Abstract Raindrop size sorting is a ubiquitous microphysical occurrence in precipitating systems. Owing to the greater terminal fall speed of larger particles, a raindrop’s fall trajectory can be sensitive to its size, and strong air currents (e.g., a convective updraft) can enhance this sensitivity. Indeed, observational and numerical model simulation studies have confirmed these effects on raindrop size distributions near convective updrafts. One striking example is the lofting of liquid drops and partially frozen hydrometeors above the environmental 0°C level, resulting in a small columnar region of positive differential reflectivity ZDR in polarimetric radar data, known as the ZDR column. This signature can serve as a proxy for updraft location and strength, offering operational forecasters a tool for monitoring convective trends. Beneath the 0°C level, where WSR-88D spatiotemporal resolution is highest, anomalously high ZDR collocated with lower reflectivity factor at horizontal polarization ZH is often observed within and beneath convective updrafts. Here, size sorting creates a deficit in small drops, while relatively large drops and melting hydrometeors are present in low concentrations. As such, this unique raindrop size distribution and its related polarimetric signature can indicate updraft location sooner and more frequently than the detection of a ZDR column. This paper introduces a novel algorithm that capitalizes on the improved radar coverage at lower levels and automates the detection of this size sorting signature. At the algorithm core, unique ZH–ZDR relationships are created for each radar elevation scan, and positive ZDR outliers (often indicative of size sorting) are identified. Algorithm design, examples, performance, strengths and limitations, and future development are discussed.


2012 ◽  
Vol 29 (6) ◽  
pp. 772-795 ◽  
Author(s):  
Lei Lei ◽  
Guifu Zhang ◽  
Richard J. Doviak ◽  
Robert Palmer ◽  
Boon Leng Cheong ◽  
...  

Abstract The quality of polarimetric radar data degrades as the signal-to-noise ratio (SNR) decreases. This substantially limits the usage of collected polarimetric radar data to high SNR regions. To improve data quality at low SNRs, multilag correlation estimators are introduced. The performance of the multilag estimators for spectral moments and polarimetric parameters is examined through a theoretical analysis and by the use of simulated data. The biases and standard deviations of the estimates are calculated and compared with those estimates obtained using the conventional method.


2009 ◽  
Vol 26 (9) ◽  
pp. 1829-1842 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar ◽  
Luca Baldini

Abstract A method is proposed to retrieve raindrop shape–size relations from the radar measurements of reflectivity factor Zh, differential reflectivity Zdr, and specific differential phase Kdp at S band. This procedure is obtained using a domain defined by the two variables Kdp/Zh and Zdr where the drop size distribution (DSD) variability is collapsed onto a line and any variation is essentially due to the drop shape variability. To obtain information on the raindrop shape–size relation underlying a set of radar observations, this domain is studied in conjunction with another domain describing the relation between the drop axial ratio (or shape) and its equivolumetric diameter. Using an initial drop shape and choosing a set of DSDs described by a normalized gamma model, polarimetric radar measurements are produced by simulation. An averaged curve of Kdp/Zh versus Zdr is obtained and compared with the same curve obtained from the radar data. By changing the initial axial ratio relation, a procedure of minimization between the two curves is developed to derive the underlying drop shape–size relation governing the radar measurements under consideration. Three sets of radar data collected in different climatic regions are analyzed to evaluate whether there is a unique shape–size relation.


2016 ◽  
Author(s):  
Timothy H. Raupach ◽  
Alexis Berne

Abstract. A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific double-normalised DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.


2017 ◽  
Vol 56 (4) ◽  
pp. 877-896 ◽  
Author(s):  
Merhala Thurai ◽  
Patrick Gatlin ◽  
V. N. Bringi ◽  
Walter Petersen ◽  
Patrick Kennedy ◽  
...  

AbstractAnalysis of drop size distributions (DSD) measured by collocated Meteorological Particle Spectrometer (MPS) and a third-generation, low-profile, 2D-video disdrometer (2DVD) are presented. Two events from two different regions (Greeley, Colorado, and Huntsville, Alabama) are analyzed. While the MPS, with its 50-μm resolution, enabled measurements of small drops, typically for drop diameters below about 1.1 mm, the 2DVD provided accurate measurements for drop diameters above 0.7 mm. Drop concentrations in the 0.7–1.1-mm overlap region were found to be in excellent agreement between the two instruments. Examination of the combined spectra clearly reveals a drizzle mode and a precipitation mode. The combined spectra were analyzed in terms of the DSD parameters, namely, the normalized intercept parameter NW, the mass-weighted mean diameter Dm, and the standard deviation of mass spectrum σM. The inclusion of small drops significantly affected the NW and the ratio σM/Dm toward higher values relative to using the 2DVD-based spectra alone. For each of the two events, polarimetric radar data were used to characterize the variation of radar-measured reflectivity Zh and differential reflectivity Zdr with Dm from the combined spectra. In the Greeley event, this variation at S band was well captured for small values of Dm (<0.5 mm) where measured Zdr tended to 0 dB but Zh showed a noticeable decrease with decreasing Dm. For the Huntsville event, an overpass of the Global Precipitation Measurement mission Core Observatory satellite enabled comparison of satellite-based dual-frequency radar retrievals of Dm with ground-based DSD measurements. Small differences were found between the satellite-based radar retrievals and disdrometers.


2006 ◽  
Vol 63 (4) ◽  
pp. 1273-1290 ◽  
Author(s):  
Guifu Zhang ◽  
Juanzhen Sun ◽  
Edward A. Brandes

Abstract Disdrometer observations indicate that the raindrop size distribution (DSD) can be represented by a constrained-gamma (CG) distribution model. The model is used to retrieve DSDs from polarization radar measurements of reflectivity and differential reflectivity and to characterize rain microphysics and physical processes such as evaporation, accretion, and precipitation. The CG model parameterization is simplified to a single parameter for application in single-moment numerical models. This simplified parameterization is applied in the Variational Doppler Radar Analysis System (VDRAS) using Kessler-type parameterizations for model initialization and forecasting. Results are compared to those for the Marshall–Palmer (MP) DSD model. It is found that the simplified CG model parameterization better preserves the stratiform rain and produces better forecasts than the MP model parameterization.


2005 ◽  
Vol 2 ◽  
pp. 51-57 ◽  
Author(s):  
G. Vulpiani ◽  
F. S. Marzano ◽  
V. Chandrasekar ◽  
R. Uijlenhoet

Abstract. A new model-based iterative technique to correct for attenuation and differential attenuation and retrieve rain rate, based on a neural-network scheme and a differential phase constraint, is presented. Numerical simulations are used to investigate the efficiency and accuracy of this approach named NIPPER. The simulator is based on a T-matrix solution technique, while precipitation is characterized with respect to shape, raindrop size distribution and orientation. A sensitivity analysis is performed in order to evaluate the expected errors of this method. The performance of the proposed methodology on radar measurements is evaluated by using one-dimensional Gaussian shaped rain cell models and synthetic radar data derived from disdrometer measurements. Numerical results are discussed in order to evaluate the robustness of the proposed technique.


2019 ◽  
Vol 36 (4) ◽  
pp. 567-583 ◽  
Author(s):  
Yadong Wang ◽  
Tian-You Yu ◽  
Alexander V. Ryzhkov ◽  
Matthew R. Kumjian

AbstractSpectral polarimetry has the potential to be used to study microphysical properties in relation to the dynamics within a radar resolution volume by combining Doppler and polarimetric measurements. The past studies of spectral polarimetry have focused on using radar measurements from higher elevation angles, where both the size sorting from the hydrometeors’ terminal velocities and polarimetric characteristics are maintained. In this work, spectral polarimetry is applied to data from the 0° elevation angle, where polarimetric properties are maximized. Radar data collected by the C-band University of Oklahoma Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) during a hailstorm event on 24 April 2011 are used in the analysis. The slope of the spectral differential reflectivity exhibits interesting variations across the hail core, which suggests the presence of size sorting of hydrometeors caused by vertical shear in a turbulent environment. A nearby S-band polarimetric Weather Surveillance Radar-1988 Doppler (KOUN) is also used to provide insights into this hailstorm. Moreover, a flexible numerical simulation is developed for this study, in which different types of hydrometeors such as rain and melting hail can be considered individually or as a combination under different sheared and turbulent conditions. The impacts of particle size distribution, shear, turbulence, attenuation, and mixture of rain and melting hail on polarimetric spectral signatures are investigated with the simulated Doppler spectra and spectral differential reflectivity.


Sign in / Sign up

Export Citation Format

Share Document