scholarly journals Evaluation of Global Reanalysis Land Surface Wind Speed Trends to Support Wind Energy Development Using In Situ Observations

2021 ◽  
Vol 60 (1) ◽  
pp. 33-50
Author(s):  
Wenxin Fan ◽  
Yi Liu ◽  
Adrian Chappell ◽  
Li Dong ◽  
Rongrong Xu ◽  
...  

AbstractGlobal reanalysis products are important tools across disciplines to study past meteorological changes and are especially useful for wind energy resource evaluations. Studies of observed wind speed show that land surface wind speed declined globally since the 1960s (known as global terrestrial stilling) but reversed with a turning point around 2010. Whether the declining trend and the turning point have been captured by reanalysis products remains unknown so far. To fill this research gap, a systematic assessment of climatological winds and trends in five reanalysis products (ERA5, ERA-Interim, MERRA-2, JRA-55, and CFSv2) was conducted by comparing gridcell time series of 10-m wind speed with observational data from 1439 in situ meteorological stations for the period 1989–2018. Overall, ERA5 is the closest to the observations according to the evaluation of climatological winds. However, substantial discrepancies were found between observations and simulated wind speeds. No reanalysis product showed similar change to that of the global observations, although some showed regional agreement. This discrepancy between observed and reanalysis land surface wind speed indicates the need for prudence when using reanalysis products for the evaluation and prediction of winds. The possible reasons for the inconsistent wind speed trends between reanalysis products and observations are analyzed. The results show that wind energy production should select different products for different regions to minimize the discrepancy with observations.

2005 ◽  
Vol 133 (4) ◽  
pp. 942-960 ◽  
Author(s):  
Zewdu T. Segele ◽  
David J. Stensrud ◽  
Ian C. Ratcliffe ◽  
Geoffrey M. Henebry

Severe thunderstorms developed on 20 June 1997 and produced heavy precipitation, damaging winds, and large hail over two swaths in southeastern South Dakota. Calculations of fractional vegetation coverage (scaled from 0 to 1) based upon composite satellite data indicate that, within the hailstreak region, vegetation coverage decreased from 0.50 to near 0.25 owing to the damaging effects of hail on the growing vegetation. The northern edge of the larger hailstreak was located a few kilometers south of Chamberlain, South Dakota, a National Weather Service surface observation site. Hourly observations from Chamberlain and several nearby surface sites in South Dakota are averaged over 7 days both before and after this hail event. These observations illustrate that the late-afternoon (nighttime) temperatures are 2°C higher (2°C lower) near the hailstreak after the event than before the event. Similarly, daily average dewpoint temperatures after the event are 2.6°C lower near the hailstreak. These changes are consistent with the influences of a recently devegetated zone on changes to the surface energy budget. To explore how these hailstreaks further affected the evolution of the planetary boundary layer in this region, two model simulations are performed using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). In the control run, climatology is used for the land surface characteristics, and hence the simulation is independent of the hailstreaks. In the hailstreak simulation (HSS), the fractional vegetation coverage and soil moisture in the hailstreak regions are modified to reflect the likely conditions within the hailstreaks. Two different days are simulated: one with low surface wind speeds and one with stronger surface wind speeds. For the low surface wind speed case, the HSS simulation produces a sea-breeze-like circulation in the boundary layer by midmorning. For the stronger surface wind speed case, this sea-breeze-like circulation does not develop in the HSS, but the simulated low-level temperatures are modified over a larger area. These results suggest that to capture and reasonably simulate the evolution of boundary layer structures, there is a need for routine daily updates of land surface information. Hailstreaks also are important to consider in the future as the focus for observational studies on nonclassical mesoscale circulations.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5425
Author(s):  
Justė Jankevičienė ◽  
Arvydas Kanapickas

Developing wind energy in Lithuania is one of the most important ways to achieve green energy goals. Observational data show that the decline in wind speeds in the region may pose challenges for wind energy development. This study analyzed the long-term variation of the observed 2006–2020 and projected 2006–2100 near-surface wind speed at the height of 10 m over Lithuanian territory using data of three models included in the Coupled Model Intercomparison Project phase 5 (CMIP5). A slight decrease in wind speeds was found in the whole territory of Lithuania for the projected wind speed data of three global circulation models for the scenarios RCP2.6, RCP4.5, and RCP8.5. It was found that the most favorable scenario for wind energy production is RCP2.6, and the most unfavorable is the RCP4.5 scenario under which the decrease in wind speed may reach 12%. At the Baltic Sea coastal region, the decline was smaller than in the country’s inner regions by the end of the century. The highest reduction in speed is characteristic of the most severe RCP8.5 scenario. Although the analysis of wind speeds projected by global circulation models (GCM) confirms the downward trends in wind speeds found in the observational data, the projected changes in wind speeds are too small to significantly impact the development of wind farms in Lithuania.


2020 ◽  
Vol 12 (12) ◽  
pp. 2034 ◽  
Author(s):  
Hongsu Liu ◽  
Shuanggen Jin ◽  
Qingyun Yan

Ocean surface wind speed is an essential parameter for typhoon monitoring and forecasting. However, traditional satellite and buoy observations are difficult to monitor the typhoon due to high cost and low temporal-spatial resolution. With the development of spaceborne GNSS-R technology, the cyclone global navigation satellite system (CYGNSS) with eight satellites in low-earth orbit provides an opportunity to measure the ocean surface wind speed of typhoons. Though observations are made at the extremely efficient spatial and temporal resolution, its accuracy and reliability are unclear in an actual super typhoon case. In this study, the wind speed variations over the life cycle of the 2018 Typhoon Mangkhut from CYGNSS observations were evaluated and compared with European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-5 (ERA-5). The results show that the overall root-mean-square error (RMSE) of CYGNSS versus ECMWF was 4.12 m/s, the mean error was 1.36 m/s, and the correlation coefficient was 0.96. For wind speeds lower and greater than 15 m/s, the RMSE of CYGNSS versus ECMWF were 1.02 and 4.36 m/s, the mean errors were 0.05 and 1.61 m/s, the correlation coefficients were 0.91 and 0.90, and the average relative errors were 9.8% and 11.6%, respectively. When the typhoon reached a strong typhoon or super typhoon, the RMSE of CYGNSS with respect to ERA-5 from ECMWF was 5.07 m/s; the mean error was 3.57 m/s; the correlation coefficient was 0.52 and the average relative error was 11.0%. The CYGNSS estimation had higher precision for wind speeds below 15 m/s, but degraded when the wind speed was above 15 m/s.


2017 ◽  
Vol 12 (11) ◽  
pp. 114019 ◽  
Author(s):  
Verónica Torralba ◽  
Francisco J Doblas-Reyes ◽  
Nube Gonzalez-Reviriego

2020 ◽  
Vol 2 (2) ◽  
pp. 80-88
Author(s):  
Waluyo Waluyo ◽  
Meli Ruslinar

The microcontroller is one technology that is developing so rapidly with various types and functions, one of which is Arduino Uno which can be used as a microcontroller for various functions in the field of electronics technology. This research was conducted at the Laboratory of Ocean Engineering Modeling, Marine and Fisheries Polytechnic of Karawang in March-June 2020. The purpose of this study was to create a microcontroller-based sea surface wind speed measuring instrument. Based on the results of the acquisition of wind data using a fan simulation and natural wind gusts with different wind speeds in the field show a significant tool response. The results of the comparison of data recording between the results of research with the existing wind speed measuring instrument show that there is an average tool error of 3.24%, a relative error of 3.78%, and an instrument accuracy rate of 96.76%. Thus it can be said that the ability of the tool is able to record wind data with high accuracy.


2020 ◽  
Vol 13 (12) ◽  
pp. 6889-6899
Author(s):  
Robert R. Nelson ◽  
Annmarie Eldering ◽  
David Crisp ◽  
Aronne J. Merrelli ◽  
Christopher W. O'Dell

Abstract. Satellite measurements of surface wind speed over the ocean inform a wide variety of scientific pursuits. While both active and passive microwave sensors are traditionally used to detect surface wind speed over water surfaces, measurements of reflected sunlight in the near-infrared made by the Orbiting Carbon Observatory-2 (OCO-2) are also sensitive to the wind speed. In this work, retrieved wind speeds from OCO-2 glint measurements are validated against the Advanced Microwave Scanning Radiometer-2 (AMSR2). Both sensors are in the international Afternoon Constellation (A-Train), allowing for a large number of co-located observations. Several different OCO-2 retrieval algorithm modifications are tested, with the most successful being a single-band Cox–Munk-only model. Using this, we find excellent agreement between the two sensors, with OCO-2 having a small mean bias against AMSR2 of −0.22 m s−1, an RMSD of 0.75 m s−1, and a correlation coefficient of 0.94. Although OCO-2 is restricted to clear-sky measurements, potential benefits of its higher spatial resolution relative to microwave instruments include the study of coastal wind processes, which may be able to inform certain economic sectors.


Author(s):  
Shakeel Asharaf ◽  
Duane E. Waliser ◽  
Derek J. Posselt ◽  
Christopher S. Ruf ◽  
Chidong Zhang ◽  
...  

AbstractSurface wind plays a crucial role in many local/regional weather and climate processes, especially through the exchanges of energy, mass and momentum across the Earth’s surface. However, there is a lack of consistent observations with continuous coverage over the global tropical ocean. To fill this gap, the NASA Cyclone Global Navigation Satellite System (CYGNSS) mission was launched in December 2016, consisting of a constellation of eight small spacecrafts that remotely sense near surface wind speed over the tropical and sub-tropical oceans with relatively high sampling rates both temporally and spatially. This current study uses data obtained from the Tropical Moored Buoy Arrays to quantitatively characterize and validate the CYGNSS derived winds over the tropical Indian, Pacific, and Atlantic Oceans. The validation results show that the uncertainty in CYGNSS wind speed, as compared with these tropical buoy data, is less than 2 m s-1 root mean squared difference, meeting the NASA science mission Level-1 uncertainty requirement for wind speeds below 20 m s-1. The quality of the CYGNSS wind is further assessed under different precipitation conditions, and in convective cold-pool events, identified using buoy rain and temperature data. Results show that CYGNSS winds compare fairly well with buoy observations in the presence of rain, though at low wind speeds the presence of rain appears to cause a slight positive wind speed bias in the CYGNSS data. The comparison indicates the potential utility of the CYGNSS surface wind product, which in turn may help to unravel the complexities of air-sea interaction in regions that are relatively under-sampled by other observing platforms.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
De Zhang ◽  
Luyuan Chen ◽  
Feimin Zhang ◽  
Juan Tan ◽  
Chenghai Wang

Accurate forecast and simulation of near-surface wind is a great challenge for numerical weather prediction models due to the significant transient and intermittent nature of near-surface wind. Based on the analyses of the impact of assimilating in situ and Advanced Tiros Operational Vertical Sounder (ATOVS) satellite radiance data on the simulation of near-surface wind during a severe wind event, using the new generation mesoscale Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system, the dynamic downscaling of near-surface wind is further investigated by coupling the microscale California Meteorological (CALMET) model with the WRF and its 3DVAR system. Results indicate that assimilating in situ and ATOVS radiance observations strengthens the airflow across the Alataw valley and triggers the downward transport of momentum from the upper atmosphere in the downstream area of the valley in the initial conditions, thus improving near-surface wind simulations. Further investigations indicate that the CALMET model provides more refined microtopographic structures than the WRF model in the vicinity of the wind towers. Although using the CALMET model achieves the best simulation of near-surface wind through dynamic downscaling of the output from the WRF and its 3DVAR assimilation, the simulation improvements of near-surface wind speed are mainly within 1 m s−1. Specifically, the mean improvement proportions of near-surface wind speed are 64.8% for the whole simulation period, 58.7% for the severe wind period, 68.3% for the severe wind decay period, and 75.4% for the weak wind period. The observed near-surface wind directions in the weak wind conditions are better simulated in the coupled model with CALMET downscaling than in the WRF and its 3DVAR system. It is concluded that the simulation improvements of CALMET downscaling are distinct when near-surface winds are weak, and the downscaling effects are mainly manifested in the simulation of near-surface wind directions.


2007 ◽  
Vol 24 (6) ◽  
pp. 1131-1142 ◽  
Author(s):  
Anant Parekh ◽  
Rashmi Sharma ◽  
Abhijit Sarkar

A 2-yr (June 1999–June 2001) observation of ocean surface wind speed (SWS) and sea surface temperature (SST) derived from microwave radiometer measurements made by a multifrequency scanning microwave radiometer (MSMR) and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is compared with direct measurements by Indian Ocean buoys. Also, for the first time SWS and SST values of the same period obtained from 40-yr ECMWF Re-Analysis (ERA-40) have been evaluated with these buoy observations. The SWS and SST are shown to have standard deviations of 1.77 m s−1 and 0.60 K for TMI, 2.30 m s−1 and 2.0 K for MSMR, and 2.59 m s−1 and 0.68 K for ERA-40, respectively. Despite the fact that MSMR has a lower-frequency channel, larger values of bias and standard deviation (STD) are found compared to those of TMI. The performance of SST retrieval during the daytime is found to be better than that at nighttime. The analysis carried out for different seasons has raised an important question as to why one spaceborne instrument (TMI) yields retrievals with similar biases during both pre- and postmonsoon periods and the other (MSMR) yields drastically different results. The large bias at low wind speeds is believed to be due to the poorer sensitivity of microwave emissivity variations at low wind speeds. The extreme SWS case study (cyclonic condition) showed that satellite-retrieved SWS captured the trend and absolute magnitudes as reflected by in situ observations, while the model (ERA-40) failed to do so. This result has direct implications on the real-time application of satellite winds in monitoring extreme weather events.


Sign in / Sign up

Export Citation Format

Share Document