scholarly journals An Operation-Based Scheme for a Multiyear and Multipurpose Reservoir to Enhance Macroscale Hydrologic Models

2012 ◽  
Vol 13 (1) ◽  
pp. 270-283 ◽  
Author(s):  
Yiping Wu ◽  
Ji Chen

Abstract This paper develops an operation-based numerical scheme for simulating storage in and outflow from a multiyear and multipurpose reservoir at a daily time step in order to enhance the simulation capacity of macroscale land surface hydrologic models. In the new scheme, besides the purpose of flood control, three other operational purposes—hydropower generation, downstream water supply, and water impoundment—are considered, and accordingly three related decision-based parameters are introduced. The new scheme is then integrated into the Soil and Water Assessment Tool (SWAT), which is a macroscale hydrologic model. The observed water storage and outflow from a multiyear and multipurpose reservoir, the Xinfengjiang Reservoir in southern China, are used to examine the new scheme. Compared with two other reservoir operation schemes—namely, a modified existing reservoir operation scheme in SWAT (i.e., the target release scheme) and a multilinear regression scheme—the new scheme can give a consistently better simulation of the reservoir storage and outflow. Furthermore, through a sensitivity analysis, this study shows that the three decision-based parameters can represent the significance of each operational purpose in different periods and the new scheme can advance the flexibility and capability of the simulation of the reservoir storage and outflow.

Abstract The limited amount of shared reservoir monitoring data around the world is insufficient to quantify the dynamic nature of reservoir operation with conventional ground-based methods. With the emergence of the Reservoir Assessment Tool (RAT) driven by a multitude of earth observing satellites and models, historical observation of reservoir operation spanning 35 years was made using open-source techniques. Trends in reservoir storage change were compared with trends of four critical hydrologic variables (precipitation, runoff, evaporation, and Palmer Drought Severity Index) to understand the potential role of natural drivers in altering reservoir operating pattern. It was found that the reservoirs in Africa were losing active storage at a rate of more than 1% per year of total storage capacity. Smaller reservoirs (with a capacity of less than 0.5 km3) in South-East Asia were found to experience a sharp gain in storage of 0.5% to 1% per year of total storage capacity. Storage change trends of large reservoirs with multiple years of residence time that are designed for strategic water supply needs and drought control were found to be less affected by precipitation trends and influenced more by drought and evaporation trends. Over Africa, most reservoir storage change trends were dictated by evaporation trends, while South Asian reservoirs appear to have their storage change influenced by drought and evaporation trends. Finally, findings suggest that operation of newer reservoirs are more sensitive to long-term hydrological trends and the regulated surface water variability that is controlled by older dams in the upstream.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 645 ◽  
Author(s):  
Qingzhou Zheng ◽  
Lu Hao ◽  
Xiaolin Huang ◽  
Lei Sun ◽  
Ge Sun

Understanding the effects of land use change on evapotranspiration (ET) and its partitioning to transpiration and evaporation is important for accurately evaluating the likely environmental impacts on watershed water supply, climate moderation, and other ecosystem services (e.g., carbon sequestration and biodiversity). This study used a distributed hydrologic model, MIKE SHE, to partition evapotranspiration into soil evaporation, transpiration, ponded water evaporation, and interception, and examined how the ET partitions affected the water balance in the Qinhuai River Basin from 2000 to 2013. Simulated daily ET was compared to measurements at an eddy flux research site during 2016–2017 (R2 = 0.72). Degradation in rice-wheat rotation fields and expansion of impervious surfaces impacted not only total watershed evapotranspiration, which showed a significant downward trend (p < 0.05), but also its partitioning. A significant (p < 0.01) decrease in transpiration was detected. Ponded water evaporation was the only ET partition that exhibited a significant positive trend (p < 0.05). We concluded that the reduced transpiration as a result of land use and land cover change was the primary factor driving the variation of watershed scale evapotranspiration. In addition, there was an increase in annual water yield (23%) as a response to significant reduction in ET (7%) due to a 175% expansion of urban area in the study watershed. Our study provided insights to the mechanisms of land surface–water cycle interaction and better understanding of the effects of land use change on urban micro-climate such as “urban dry island” and “urban heat island” effects.


2019 ◽  
Vol 11 (18) ◽  
pp. 5024 ◽  
Author(s):  
Wang ◽  
Shao ◽  
Su ◽  
Cui ◽  
Zhang

In the karst area of southern China, karst water is important for supporting the sustainable production and home living for the local residents. Consequently, it is of significance to fully understand the water cycle, so as to make full use of water resources. In karst areas, epikarst and conduits are developed, participating in the hydrological cycle actively. For conventional lumped hydrologic models, it is difficult to simulate the hydrological cycle accurately. These models neglect to consider the variation of underlying surface and weather change. Meanwhile, for the original distributed hydrological model, the existence of epikarst and underground conduits as well as inadequate data information also make it difficult to achieve accurate simulation. To this end, the framework combining the advantages of lumped model–reservoir model and distributed hydrologic model–Soil and Water Assessment Tool (SWAT) model is established to simulate the water cycle efficiently in a karst area. Xianghualing karst watershed in southern China was selected as the study area and the improved SWAT model was used to simulate the water cycle. Results show that the indicators of ENS and R2 in the calibration and verification periods are both above 0.8, which is evidently improved in comparison with the original model. The improved SWAT model is verified to have better efficiency in describing the hydrological cycle in a typical karst area.


2019 ◽  
Author(s):  
Benjamin N. O. Kuffour ◽  
Nicholas B. Engdahl ◽  
Carol S. Woodward ◽  
Laura E. Condon ◽  
Stefan Kollet ◽  
...  

Abstract. Surface and subsurface flow constitute a naturally linked hydrologic continuum that has not traditionally been simulated in an integrated fashion. Recognizing the interactions between these systems has encouraged the development of integrated hydrologic models (IHMs) capable of treating surface and subsurface systems as a single integrated resource. IHMs is dynamically evolving with improvement in technology and the extent of their current capabilities are often only known to the developers and not general users. This article provides an overview of the core functionality, capability, applications, and ongoing development of one open-source IHM, ParFlow. ParFlow is a parallel, integrated, hydrologic model that simulates surface and subsurface flows. ParFlow solves Richards’ equation for three-dimensional variably saturated groundwater flow and the two-dimensional kinematic wave approximation of the shallow water equations for overland flow. The model employs a conservative centered finite difference scheme and a conservative finite volume method for subsurface flow and transport, respectively. ParFlow uses multigrid preconditioned Krylov and Newton-Krylov methods to solve the linear and nonlinear systems within each time step of the flow simulations. The code has demonstrated very efficient parallel solution capabilities. ParFlow has been coupled to geochemical reaction, land surface (e.g. Common Land Model), and atmospheric models to study the interactions among the subsurface, land surface, and the atmosphere systems across different spatial scales. This overview focuses on the current capabilities of the code, the core simulation engine, and the primary couplings of the subsurface model to other codes, taking a high-level perspective.


2014 ◽  
Vol 15 (5) ◽  
pp. 2067-2084 ◽  
Author(s):  
Xue-Jun Zhang ◽  
Qiuhong Tang ◽  
Ming Pan ◽  
Yin Tang

Abstract A long-term consistent and comprehensive dataset of land surface hydrologic fluxes and states will greatly benefit the analysis of land surface variables, their changes and interactions, and the assessment of land–atmosphere parameterizations for climate models. While some offline model studies can provide balanced water and energy budgets at land surface, few of them have presented an evaluation of the long-term interaction of water balance components over China. Here, a consistent and comprehensive land surface hydrologic fluxes and states dataset for China using the Variable Infiltration Capacity (VIC) hydrologic model driven by long-term gridded observation-based meteorological forcings is developed. The hydrologic dataset covers China with a 0.25° spatial resolution and a 3-hourly time step for 1952–2012. In the dataset, the simulated streamflow matches well with the observed monthly streamflow at the large river basins in China. Given the water balance scheme in the VIC model, the overall success at runoff simulations suggests that the long-term mean evapotranspiration is also realistically estimated. The simulated soil moisture generally reproduces the seasonal variation of the observed soil moisture at the ground stations where long-term observations are available. The modeled snow cover patterns and monthly dynamics bear an overall resemblance to the Northern Hemisphere snow cover extent data from the National Snow and Ice Data Center. Compared with global product of a similar nature, the dataset can provide a more reliable estimate of land surface variables over China. The dataset, which will be publicly available via the Internet, may be useful for hydroclimatological studies in China.


Author(s):  
J. Serrano ◽  
J. M. Jamilla ◽  
B. C. Hernandez ◽  
E. Herrera

Abstract. Runoffs from hydrologic models are often used in flood models, among other applications. These runoffs are converted from rainfall, signifying the importance of weather data accuracy. A common challenge for modelers is local weather data sparsity in most watersheds. Global weather datasets are often used as alternative. This study investigates the statistical significance and accuracy between using local weather data for hydrologic models and using the Climate Forecast System Reanalysis (CFSR), a global weather dataset. The Soil and Water Assessment Tool (SWAT) was used to compare the two weather data inputs in terms of generated discharges. Both long-term and event-based results were investigated to compare the models against absolute discharge values. The basin’s average total annual rainfall from the CFSR-based model (4062 mm) was around 1.5 times the local weather-based model (2683 mm). These basin precipitations yielded annual average flows of 53.4 cms and 26.7 cms for CFSR-based and local weather-based models, respectively. For the event-based scenario, the dates Typhoon Ketsana passed through the Philippine Area of Responsibility were checked. CFSR only read a spatially averaged maximum daily rainfall of 18.8 mm while the local gauges recorded 157.2 mm. Calibration and validation of the models were done using the observed discharges in Sto. Niño Station. The calibration of local weather-based model yielded satisfactory results for the Nash-Sutcliffe Efficiency (NSE), percent of bias (PBIAS), and ratio of the RMSE to the standard deviation of measured data (RSR). Meanwhile, the calibration of CFSR model yielded unsatisfactory values for all three parameters.


2013 ◽  
Vol 27 (11) ◽  
pp. 3929-3944 ◽  
Author(s):  
Rafael Pedrollo de Paes ◽  
João Luiz Boccia Brandão

2013 ◽  
Vol 16 (3) ◽  
pp. 588-599 ◽  
Author(s):  
Kenneth J. Tobin ◽  
Marvin E. Bennett

With the proliferation of remote sensing platforms as well as numerous ground products based on weather radar estimation, there are now multiple options for precipitation data beyond traditional rain gauges for which most hydrologic models were originally designed. This study evaluates four precipitation products as input for generating streamflow simulations using two hydrologic models that significantly vary in complexity. The four precipitation products include two ground products from the National Weather Service: the Multi-sensor Precipitation Estimator (MPE) and rain gauge data. The two satellite products come from NASA's Tropical Rainfall Measurement Mission (TRMM) and include the TRMM 3B42 Research Version 6, which has a built-in ground bias correction, and the real-time TRMM Multi-Satellite Precipitation Analysis. The two hydrologic models utilized include the Soil and Water Assessment Tool (SWAT) and Gridded Surface and Subsurface Hydrologic Analysis (GSSHA). Simulations were conducted in three, moderate- to large-sized basins across the southern United States, the San Casimiro (South Texas), Skuna (northern Mississippi), Alapaha (southern Georgia), and were run for over 2 years. This study affirms the realization that input precipitation is at least as important as the choice of hydrologic model.


2006 ◽  
Vol 7 (2) ◽  
pp. 298-304 ◽  
Author(s):  
S. R. Fassnacht ◽  
Z-L. Yang ◽  
K. R. Snelgrove ◽  
E. D. Soulis ◽  
N. Kouwen

Abstract The energy and water balances at the earth's surface are dramatically influenced by the presence of snow cover. Therefore, soil temperature and moisture for snow-covered and snow-free areas can be very different. In computing these soil state variables, many land surface schemes in climate models do not explicitly distinguish between snow-covered and snow-free areas. Even if they do, some schemes average these state variables to calculate grid-mean energy fluxes and these averaged state variables are then used at the beginning of the next time step. This latter approach introduces a numerical error in that heat is redistributed from snow-free areas to snow-covered areas, resulting in a more rapid snowmelt. This study focuses on the latter approach and examines the sensitivity of soil moisture and streamflow to the treatment of the soil state variables in the presence of snow cover by using WATCLASS, a land surface scheme linked with a hydrologic model. The model was tested for the 1993 snowmelt period on the Upper Grand River in Southern Ontario, Canada. The results show that a more realistic simulation of streamflow can be obtained by keeping track of the soil states in snow-covered and snow-free areas.


Sign in / Sign up

Export Citation Format

Share Document