scholarly journals Evaluating Hydroclimatic Change Signals from Statistically and Dynamically Downscaled GCMs and Hydrologic Models

2014 ◽  
Vol 15 (2) ◽  
pp. 844-860 ◽  
Author(s):  
Rajesh R. Shrestha ◽  
Markus A. Schnorbus ◽  
Arelia T. Werner ◽  
Francis W. Zwiers

Abstract This study analyzed potential hydroclimatic change in the Peace River basin in the province of British Columbia, Canada, based on two structurally different approaches: (i) statistically downscaled global climate models (GCMs) using the bias-corrected spatial disaggregation (BCSD) and (ii) dynamically downscaled GCM with the Canadian Regional Climate Model (CRCM). Additionally, simulated hydrologic changes from the GCM–BCSD-driven Variable Infiltration Capacity (VIC) model were compared to the CRCM integrated Canadian Land Surface Scheme (CLASS) output. The results show good agreements of the GCM–BCSD–VIC simulated precipitation, temperature, and runoff with observations, while the CRCM-simulated results differ substantially from observations. Nevertheless, differences (between the 2050s and 1970s) obtained from the two approaches are qualitatively similar for precipitation and temperature, although they are substantially different for snow water equivalent and runoff. The results obtained from the five Coupled Global Climate Model, version 3, (CGCM3)-driven CRCM runs are similar, suggesting that the multidecadal internal variability is not a large source of uncertainty for the Peace River basin. Overall, the GCM–BCSD–VIC approach, for now, remains the preferred approach for projecting basin-scale future hydrologic changes, provided that it explicitly accounts for the biases and includes plausible snow and runoff parameterizations. However, even with the GCM–BCSD–VIC approach, projections differ considerably depending on which of an ensemble of eight GCMs is used. Such differences reemphasize the uncertain nature of future hydroclimatic projections.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 867
Author(s):  
Dong Wang ◽  
Jiahong Liu ◽  
Weiwei Shao ◽  
Chao Mei ◽  
Xin Su ◽  
...  

Evaluating global climate model (GCM) outputs is essential for accurately simulating future hydrological cycles using hydrological models. The GCM multi-model ensemble (MME) precipitation simulations of the Climate Model Intercomparison Project Phases 5 and 6 (CMIP5 and CMIP6, respectively) were spatially and temporally downscaled according to a multi-site statistical downscaling method for the Hanjiang River Basin (HRB), China. Downscaled precipitation accuracy was assessed using data collected from 14 meteorological stations in the HRB. The spatial performances, temporal performances, and seasonal variations of the downscaled CMIP5-MME and CMIP6-MME were evaluated and compared with observed data from 1970–2005. We found that the multi-site downscaling method accurately downscaled the CMIP5-MME and CMIP6-MME precipitation simulations. The downscaled precipitation of CMIP5-MME and CMIP6-MME captured the spatial pattern, temporal pattern, and seasonal variations; however, precipitation was slightly overestimated in the western and central HRB and precipitation was underestimated in the eastern HRB. The precipitation simulation ability of the downscaled CMIP6-MME relative to the downscaled CMIP5-MME improved because of reduced biases. The downscaled CMIP6-MME better simulated precipitation for most stations compared to the downscaled CMIP5-MME in all seasons except for summer. Both the downscaled CMIP5-MME and CMIP6-MME exhibit poor performance in simulating rainy days in the HRB.


Author(s):  
R. Vezzoli ◽  
M. Del Longo ◽  
P. Mercogliano ◽  
M. Montesarchio ◽  
S. Pecora ◽  
...  

Abstract. River discharges are the main expression of the hydrological cycle and are the results of climate natural variability. The signal of climate changes occurrence raises the question of how it will impact on river flows and on their extreme manifestations: floods and droughts. This question can be addressed through numerical simulations spanning from the past (1971) to future (2100) under different climate change scenarios. This work addresses the capability of a modelling chain to reproduce the observed discharge of the Po River over the period 1971–2000. The modelling chain includes climate and hydrological/hydraulic models and its performance is evaluated through indices based on the flow duration curve. The climate datasets used for the 1971–2000 period are (a) a high resolution observed climate dataset, and COSMO-CLM regional climate model outputs with (b) perfect boundary condition, ERA40 Reanalysis, and (c) suboptimal boundary conditions provided by the global climate model CMCC–CM. The aim of the different simulations is to evaluate how the uncertainties introduced by the choice of the regional and/or global climate models propagate in the simulated discharges. This point is relevant to interpret the results of the simulated discharges when scenarios for the future are considered. The hydrological/hydraulic components are simulated through a physically-based distributed model (TOPKAPI) and a water balance model at the basin scale (RIBASIM). The aim of these first simulations is to quantify the uncertainties introduced by each component of the modelling chain and their propagation. Estimation of the overall uncertainty is relevant to correctly understand the future river flow regimes. The results show how bias correction algorithms can help in reducing the overall uncertainty associated to the different stages of the modelling chain.


2018 ◽  
Vol 56 (6) ◽  
pp. 732
Author(s):  
Anh Thi Van Vu ◽  
Thuc Tran ◽  
Minh Truong Ha ◽  
Lanh Thi Minh Pham

A top-down approach begins with Global Climate Models (GCMs) is a common method for assessing climate change impacts on water resources in river basins. To overcome the coarse resolution of GCMs, dynamic downscaling by regional climate models (RCMs) with bias-correction procedures is utilized with the aim to reflect the meteorological features at the river basin scale. However, the results still entail large uncertainties. This paper examines the ability to capture the observed baseline temperature and precipitation (1986-2005) in the Ba River Basin from GCM outputs, RCM outputs, bias-corrected GCM outputs and bias-corrected RCM outputs by analyzing statistical indicators between historical simulations and observed data in 4 temperature and 6 rainfall stations. Bias-corrected results of both GCM and RCM have significantly smaller errors compared to the unbias-corrected ones. The uncertainty of future climate projection for the mid and late 21th century of the bias-corrected GCMs and RCMs are evaluated. It is found that there is still uncertainty in projected results. A concept of “Decision-Scaling” which combines top-down and bottom-up approaches is proposed to assess the climate change impacts on hydrological system to take into account uncertainties of climate projections by models.


2012 ◽  
Vol 43 (3) ◽  
pp. 215-230 ◽  
Author(s):  
Manish Kumar Goyal ◽  
C. S. P. Ojha

We investigate the performance of existing state-of-the-art rule induction and tree algorithms, namely Single Conjunctive Rule Learner, Decision Table, M5 Model Tree, Decision Stump and REPTree. Downscaling models are developed using these algorithms to obtain projections of mean monthly precipitation to lake-basin scale in an arid region in India. The effectiveness of these algorithms is evaluated through application to downscale the predictand for the Lake Pichola region in Rajasthan state in India, which is considered to be a climatically sensitive region. The predictor variables are extracted from (1) the National Centre for Environmental Prediction (NCEP) reanalysis dataset for the period 1948–2000 and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 2001–2100. M5 Model Tree algorithm was found to yield better performance among all other learning techniques explored in the present study. The precipitation is projected to increase in future for A2 and A1B scenarios, whereas it is least for B1 and COMMIT scenarios using predictors.


2021 ◽  
pp. 1-69
Author(s):  
Zane Martin ◽  
Clara Orbe ◽  
Shuguang Wang ◽  
Adam Sobel

AbstractObservational studies show a strong connection between the intraseasonal Madden-Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO): the boreal winter MJO is stronger, more predictable, and has different teleconnections when the QBO in the lower stratosphere is easterly versus westerly. Despite the strength of the observed connection, global climate models do not produce an MJO-QBO link. Here the authors use a current-generation ocean-atmosphere coupled NASA Goddard Institute for Space Studies global climate model (Model E2.1) to examine the MJO-QBO link. To represent the QBO with minimal bias, the model zonal mean stratospheric zonal and meridional winds are relaxed to reanalysis fields from 1980-2017. The model troposphere, including the MJO, is allowed to freely evolve. The model with stratospheric nudging captures QBO signals well, including QBO temperature anomalies. However, an ensemble of nudged simulations still lacks an MJO-QBO connection.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2018 ◽  
Vol 32 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Sicheng He ◽  
Jing Yang ◽  
Qing Bao ◽  
Lei Wang ◽  
Bin Wang

AbstractRealistic reproduction of historical extreme precipitation has been challenging for both reanalysis and global climate model (GCM) simulations. This work assessed the fidelities of the combined gridded observational datasets, reanalysis datasets, and GCMs [CMIP5 and the Chinese Academy of Sciences Flexible Global Ocean–Atmospheric Land System Model–Finite-Volume Atmospheric Model, version 2 (FGOALS-f2)] in representing extreme precipitation over East China. The assessment used 552 stations’ rain gauge data as ground truth and focused on the probability distribution function of daily precipitation and spatial structure of extreme precipitation days. The TRMM observation displays similar rainfall intensity–frequency distributions as the stations. However, three combined gridded observational datasets, four reanalysis datasets, and most of the CMIP5 models cannot capture extreme precipitation exceeding 150 mm day−1, and all underestimate extreme precipitation frequency. The observed spatial distribution of extreme precipitation exhibits two maximum centers, located over the lower-middle reach of Yangtze River basin and the deep South China region, respectively. Combined gridded observations and JRA-55 capture these two centers, but ERA-Interim, MERRA, and CFSR and almost all CMIP5 models fail to capture them. The percentage of extreme rainfall in the total rainfall amount is generally underestimated by 25%–75% in all CMIP5 models. Higher-resolution models tend to have better performance, and physical parameterization may be crucial for simulating correct extreme precipitation. The performances are significantly improved in the newly released FGOALS-f2 as a result of increased resolution and a more realistic simulation of moisture and heating profiles. This work pinpoints the common biases in the combined gridded observational datasets and reanalysis datasets and helps to improve models’ simulation of extreme precipitation, which is critically important for reliable projection of future changes in extreme precipitation.


2009 ◽  
Vol 22 (13) ◽  
pp. 3838-3855 ◽  
Author(s):  
H. G. Hidalgo ◽  
T. Das ◽  
M. D. Dettinger ◽  
D. R. Cayan ◽  
D. W. Pierce ◽  
...  

Abstract This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow “center” timing (the day in the “water-year” on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States—the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier “center” timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States.


2012 ◽  
Vol 13 (2) ◽  
pp. 443-462 ◽  
Author(s):  
Marco Braun ◽  
Daniel Caya ◽  
Anne Frigon ◽  
Michel Slivitzky

Abstract The effect of a regional climate model’s (RCM’s) internal variability (IV) on climate statistics of annual series of hydrological variables is investigated at the scale of 21 eastern Canada watersheds in Quebec and Labrador. The analysis is carried out on 30-yr pairs of simulations (twins), performed with the Canadian Regional Climate Model (CRCM) for present (reanalysis and global climate model driven) and future (global climate model driven) climates. The twins differ only by the starting date of the regional simulation—a standard procedure used to trigger internal variability in RCMs. Two different domain sizes are considered: one comparable to domains used for RCM simulations over Europe and the other comparable to domains used for North America. Results for the larger North American domain indicate that mean relative differences between twin pairs of 30-yr climates reach ±5% when spectral nudging is used. Larger differences are found for extreme annual events, reaching about ±10% for 10% and 90% quantiles (Q10 and Q90). IV is smaller by about one order of magnitude in the smaller domain. Internal variability is unaffected by the period (past versus future climate) and by the type of driving data (reanalysis versus global climate model simulation) but shows a dependence on watershed size. When spectral nudging is deactivated in the large domain, the relative difference between pairs of 30-yr climate means almost doubles and approaches the magnitude of a global climate model’s internal variability. This IV at the level of the natural climate variability has a profound impact on the interpretation, analysis, and validation of RCM simulations over large domains.


10.29007/wkcx ◽  
2018 ◽  
Author(s):  
Freddy Duarte ◽  
Gerald Corzo ◽  
Germán Santos ◽  
Oscar Hernández

This study presents a new statistical downscaling method called Chaotic Statistical Downscaling (CSD). The method is based on three main steps: Phase space reconstruction for different time steps, identification of deterministic chaos and a general synchronization predictive model. The Bogotá river basin was used to test the methodology. Two sources of climatic information are downscaled: the first corresponds to 47 rainfall gauges stations (1970-2016, daily) and the second is derived from the information of the global climate model MPI-ESM-MR with a resolution of 1,875° x 1,875° daily resolution. These time series were used to reconstruct the phase space using the Method of Time-Delay. The Time-Delay method allows us to find the appropriate values of the time delay and the embedding dimension to capture the dynamics of the attractor. This information was used to calculate the exponents of Lyapunov, which shows the existence of deterministic chaos. Subsequently, a predictive model is created based on the general synchronization of two dynamical systems. Finally, the results obtained are compared with other statistical downscaling models for the Bogota River basin using different measures of error which show that the proposed method is able to reproduce reliable rainfall values (RMSE=73.37).


Sign in / Sign up

Export Citation Format

Share Document