scholarly journals A Water Balance–Based, Spatiotemporal Evaluation of Terrestrial Evapotranspiration Products across the Contiguous United States

2018 ◽  
Vol 19 (5) ◽  
pp. 891-905 ◽  
Author(s):  
Elizabeth Carter ◽  
Christopher Hain ◽  
Martha Anderson ◽  
Scott Steinschneider

Abstract Accurate gridded estimates of evapotranspiration (ET) are essential to the analysis of terrestrial water budgets. In this study, ET estimates from three gridded energy balance–based products (ETEB) with independent model formations and data forcings are evaluated for their ability to capture long-term climatology and interannual variability in ET derived from a terrestrial water budget (ETWB) for 671 gauged basins across the contiguous United States. All three ETEB products have low spatial bias and accurately capture interannual variability of ETWB in the central United States, where ETEB and ancillary estimates of change in total surface water storage (ΔTWS) from the GRACE satellite project appear to close terrestrial water budgets. In humid regions, ETEB products exhibit higher long-term bias, and the covariability of ETEB and ETWB decreases significantly. Several factors related to either failure of ETWB, such as errors in ΔTWS and precipitation, or failure of ETEB, such as treatment of snowfall and horizontal heat advection, explain some of these discrepancies. These results mirror and build on conclusions from other studies: on interannual time scales, ΔTWS and error in precipitation estimates are nonnegligible uncertainties in ET estimates based on a terrestrial water budget, and this confounds their comparison to energy balance ET models. However, there is also evidence that in at least some regions, climate and landscape features may also influence the accuracy and long-term bias of ET estimates from energy balance models, and these potential errors should be considered when using these gridded products in hydrologic applications.

2013 ◽  
Vol 14 (3) ◽  
pp. 888-905 ◽  
Author(s):  
Rebecca A. Smith ◽  
Christian D. Kummerow

Abstract Using in situ, reanalysis, and satellite-derived datasets, surface and atmospheric water budgets of the Upper Colorado River basin are analyzed. All datasets capture the seasonal cycle for each water budget component. For precipitation, all products capture the interannual variability, though reanalyses tend to overestimate in situ while satellite-derived precipitation underestimates. Most products capture the interannual variability of evapotranspiration (ET), though magnitudes differ among the products. Variability and magnitude among storage volume change products widely vary. With regards to the surface water budget, the strongest connections exist among precipitation, ET, and soil moisture, while snow water equivalent (SWE) is best correlated with runoff. Using in situ precipitation estimates, the Max Planck Institute (MPI) ET estimates, and accumulated runoff, changes in storage are calculated and compare well with estimated changes in storage calculated using SWE, reservoir, and the Climate Prediction Center’s soil moisture. Using in situ precipitation estimates, MPI ET estimates, and atmospheric divergence estimates from the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) results in a long-term atmospheric storage change estimate of −73 mm. Long-term surface storage estimates combined with long-term runoff come close to balancing with long-term atmospheric convergence from ERA-Interim. Increasing the MPI ET by 5% leads to a better balance between surface storage changes, runoff, and atmospheric convergence. It also brings long-term atmospheric storage changes to a better balance at +13 mm.


2021 ◽  
Vol 2 ◽  
Author(s):  
Estelle Levetin

Climate change is having a significant effect on many allergenic plants resulting in increased pollen production and shifts in plant phenology. Although these effects have been well-studied in some areas of the world, few studies have focused on long-term changes in allergenic pollen in the South Central United States. This study examined airborne pollen, temperature, and precipitation in Tulsa, Oklahoma over 25 to 34 years. Pollen was monitored with a Hirst-type spore trap on the roof of a building at the University of Tulsa and meteorology data were obtained from the National Weather Service. Changes in total pollen intensity were examined along with detailed analyses of the eight most abundant pollen types in the Tulsa atmosphere. In addition to pollen intensity, changes in pollen season start date, end date, peak date and season duration were also analyzed. Results show a trend to increasing temperatures with a significant increase in annual maximum temperature. There was a non-significant trend toward increasing total pollen and a significant increase in tree pollen over time. Several individual taxa showed significant increases in pollen intensity over the study period including spring Cupressaceae and Quercus pollen, while Ambrosia pollen showed a significant decrease. Data from the current study also indicated that the pollen season started earlier for spring pollinating trees and Poaceae. Significant correlations with preseason temperature may explain the earlier pollen season start dates along with a trend toward increasing March temperatures. More research is needed to understand the global impact of climate change on allergenic species, especially from other regions that have not been studied.


2015 ◽  
Vol 28 (9) ◽  
pp. 3631-3649 ◽  
Author(s):  
Michael G. Bosilovich ◽  
Jiun-Dar Chern ◽  
David Mocko ◽  
Franklin R. Robertson ◽  
Arlindo M. da Silva

Abstract The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model or perhaps assimilating data from an inconsistent observing system. In the MERRA reanalysis, an area of long-term moisture flux divergence over land has been identified over the central United States. Here, the water vapor budget is evaluated in this region, taking advantage of two unique features of the MERRA diagnostic output: 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output dataset of the assimilated observations and their innovations (e.g., forecast departures). In the central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRA’s Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 0600 and 1800 UTC analysis cycles, when radiosonde information is not prevalent. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSU-A (mainly window channels) and Atmospheric Infrared Sounder (AIRS). This effort also shows the complexities of the observing system and the reactions of the regional water budgets in reanalyses to the assimilated observations.


2017 ◽  
Vol 68 ◽  
pp. 345-354 ◽  
Author(s):  
Mark A. Drummond ◽  
Glenn E. Griffith ◽  
Roger F. Auch ◽  
Michael P. Stier ◽  
Janis L. Taylor ◽  
...  

2020 ◽  
Vol 33 (13) ◽  
pp. 5465-5477 ◽  
Author(s):  
Lucas R. Vargas Zeppetello ◽  
David S. Battisti ◽  
Marcia B. Baker

AbstractThe increasing frequency of very high summertime temperatures has motivated growing interest in the processes determining the probability distribution of surface temperature over land. Here, we show that on monthly time scales, temperature anomalies can be modeled as linear responses to fluctuations in shortwave radiation and precipitation. Our model contains only three adjustable parameters, and, surprisingly, these can be taken as constant across the globe, notwithstanding large spatial variability in topography, vegetation, and hydrological processes. Using observations of shortwave radiation and precipitation from 2000 to 2017, the model accurately reproduces the observed pattern of temperature variance throughout the Northern Hemisphere midlatitudes. In addition, the variance in latent heat flux estimated by the model agrees well with the few long-term records that are available in the central United States. As an application of the model, we investigate the changes in the variance of monthly averaged surface temperature that might be expected due to anthropogenic climate change. We find that a climatic warming of 4°C causes a 10% increase in temperature variance in parts of North America.


2012 ◽  
Vol 27 (2) ◽  
pp. 345-361 ◽  
Author(s):  
Stephen M. Jessup ◽  
Stephen J. Colucci

Abstract Heavy precipitation and flash flooding have been extensively studied in the central United States, but less so in the Northeast. This study examines 187 warm-season flash flood events identified in Storm Data to better understand the structure of the precipitation systems that cause flash flooding in the Northeast. Based on the organization and movement of these systems on radar, the events are classified into one of four categories—back-building, linear, multiple, and other/size—and then further classified into subtypes for each category. Eight of these subtypes were not previously recognized in the literature. The back-building events were the most common, followed by the multiple, other/size, and linear types. The linear event types appear to produce flash flooding less commonly in the Northeast than in other regions. In general, the subtypes producing the highest precipitation estimates are those whose structures are most conducive to a long duration of sustained moderate to heavy rainfall. The event types were found to differ from those in the central United States in that the events were more often found to be more disorganized in the Northeast. One event type in particular, back-building with merging features, while not more disorganized than the previously recognized event types, offers promise for improved forecasting because its radar signature makes the duration of sustained heavy precipitation potentially easier to predict.


2007 ◽  
Vol 20 (9) ◽  
pp. 1910-1922 ◽  
Author(s):  
Alberto M. Mestas-Nuñez ◽  
David B. Enfield ◽  
Chidong Zhang

Abstract The seasonal and interannual variability of moisture transports over the Intra-Americas Sea (including the Gulf of Mexico and the Caribbean Sea) is evaluated using the NCEP–NCAR global reanalysis. The seasonal variability of these moisture transports is consistent with previous studies and shows distinctive winter and summer regimes. Boreal winter moisture is mainly delivered to the central United States from the Pacific with some contribution from the Gulf of Mexico. It is during the boreal summer that the moisture flow over the Intra-Americas Sea is most effective in supplying the water vapor to the central United States via the northern branch of the Caribbean low-level jet. The increase of intensity of this jet during July is associated with an increase in evaporation over the Intra-Americas Sea, consistent with midsummer drought conditions over this region. During both summer and winter, the interannual variability of the inflow of moisture from the Intra-Americas Sea into central United States is associated with Caribbean low-level jet variability. The source of the varying moisture is mainly the Gulf of Mexico and the North Atlantic area just east of the Bahamas Islands and the sink is precipitation over east-central United States. The main teleconnection pattern for these interannual variations appears to be the Pacific–North American, although in boreal winter ENSO and possibly the North Atlantic Oscillation may also play a role. During boreal summer, associations with ENSO mainly involve the zonal moisture exchange between the Intra-Americas Sea/tropical Atlantic and the tropical Pacific.


2018 ◽  
Vol 31 (19) ◽  
pp. 7909-7924 ◽  
Author(s):  
Max C. A. Torbenson ◽  
David W. Stahle

Land surface feedbacks impart a significant degree of persistence between cool and warm season moisture availability in the central United States. However, the degree of correlation between these two variables is subject to major changes that appear to occur on decadal to multidecadal time scales, even in the relatively short 115-yr instrumental record. Tree-ring reconstructions have extended the limited observational record of long-term soil moisture levels, but such reconstructions do not resolve the seasonal differences in moisture conditions. We present two separate 331-yr-long seasonal moisture reconstructions for the central United States, based on sensitive subannual and annual tree-ring chronologies that have strong and separate seasonal moisture signals: an estimate of the long-term May soil moisture balance and a second estimate of the short-term June–August atmospheric moisture balance. The predictors used in each seasonal reconstruction are not significantly correlated with the alternate season target. Both reconstructions capture over 70% of the interannual variance in the instrumental data for the calibration period and also share significant decadal and multidecadal variability with the instrumental record in both the calibration and validation periods. The instrumental and reconstructed moisture levels are both positively correlated between spring and summer strongly enough to have potential value in seasonal prediction. However, the relationship between spring and summer moisture exhibits major decadal changes in strength and even sign that appear to be related to large-scale ocean–atmosphere dynamics associated with the Atlantic multidecadal oscillation.


2020 ◽  
Author(s):  
Bo Dong ◽  
Keith Haines ◽  
Chris Thomas ◽  
Chunlei Liu ◽  
Richard Allan

<p>We derive internally consistent, monthly to interannual, energy and water budgets, with uncertainties, for all the main continents and ocean basins over 2001-2011 based principally on satellite data. An inverse model is used following the Thomas et al (2019) climatology study and the NASA energy and water cycle study (NEWS), L’Ecuyer et al. (2015), Rodell et al. (2015).<br>Input data include CERES and Cloud_CCI AATSR (radiation), FluxCOM (land turbulent heat fluxes), JOFURO3 (ocean turbulent heat fluxes), GPCP2.3 (Precipitation), GRACE (total water storage), ERA5 (atmospheric water storage), GRUNv1 (land runoff), and we compare these with alternative products to assess component uncertainties. The different components are then brought together and adjusted within respective uncertainties to achieve balanced energy and water budgets.<br>Preliminary results focus on seasonal and interannual variability over land. Seasonal modifications to the water budget over Eurasia and N America include a delay in spring runoff (and reduced evapotranspiration over Eurasia) as GRACE data indicates retention of water mass over land. Evapotranspiration adjustments to FluxCOM are strongly seasonal and also result in bringing the land seasonal energy budget closer to the DEEPC Liu et al (2015) results demonstrating the value of coupling the energy and water cycles.<br>Strong correlated interannual variability in African precipitation, runoff and GRACE derived water storage is found, and we assess the relative consistency of different data products, particularly for precipitation, where multiple datasets are available and uncertainties are large. Consistent African precipitation variability is found in the TAMSAT data, which further supports the water cycle change scheme around year 2006 over Africa. Clear ENSO signals are seen, particularly over South America in 2010 and Australia in 2010-11, with correlated variability in rainfall, runoff and water storage distributions. <br>Optimisation is sensitive to the uncertainty of each energy and water budget component expressed in their spatial and temporal error covariances.  We introduce spatial error covariance for turbulent heat fluxes between major ocean basins as well as temporal error covariances for all components expressing the expectation of time mean bias adjustments. The results show improved net surface energy flux pattern with larger heat loss over North Atlantic and Arctic Ocean and more heat uptake for other basins and an intensified water cycle, with increased precipitation, evapotranspiration and runoff and stronger ocean-land water transports. </p>


2012 ◽  
Vol 25 (9) ◽  
pp. 3191-3206 ◽  
Author(s):  
Ming Pan ◽  
Alok K. Sahoo ◽  
Tara J. Troy ◽  
Raghuveer K. Vinukollu ◽  
Justin Sheffield ◽  
...  

A systematic method is proposed to optimally combine estimates of the terrestrial water budget from different data sources and to enforce the water balance constraint using data assimilation techniques. The method is applied to create global long-term records of the terrestrial water budget by merging a number of global datasets including in situ observations, remote sensing retrievals, land surface model simulations, and global reanalyses. The estimation process has three steps. First, a conventional analysis on the errors and biases in different data sources is conducted based on existing validation/error studies and other information such as sensor network density, model physics, and calibration procedures. Then, the data merging process combines different estimates so that biases and errors from different data sources can be compensated to the greatest extent and the merged estimates have the best possible confidence. Finally, water balance errors are resolved using the constrained Kalman filter technique. The procedure is applied to 32 globally distributed major basins for 1984–2006. The authors believe that the resulting global water budget estimates can be used as a baseline dataset for large-scale diagnostic studies, for example, integrated assessment of basin water resources, trend analysis and attribution, and climate change studies. The global scale of the analysis presents significant challenges in carrying out the error analysis for each water budget variable. For some variables (e.g., evapotranspiration) the assumptions underpinning the error analysis lack supporting quantitative analysis and, thus, may not hold for specific locations. Nevertheless, the merging and water balance constraining technique can be applied to many problems.


Sign in / Sign up

Export Citation Format

Share Document