Extreme Surface Winds During Landfalling Atmospheric Rivers: The Modulating Role of Near-Surface Stability

Author(s):  
Terence J. Pagano ◽  
Duane E. Waliser ◽  
Bin Guan ◽  
Hengchun Ye ◽  
F. Martin Ralph ◽  
...  

AbstractAtmospheric rivers (ARs) are long and narrow regions of strong horizontal water vapor transport. Upon landfall, ARs are typically associated with heavy precipitation and strong surface winds. A quantitative understanding of the atmospheric conditions that favor extreme surface winds during ARs has implications for anticipating and managing various impacts associated with these potentially hazardous events. Here, a global AR database (1999–2014) with relevant information from MERRA-2 reanalysis, QuikSCAT and AIRS satellite observations are used to better understand and quantify the role of near-surface static stability in modulating surface winds during landfalling ARs. The temperature difference between the surface and 1 km MSL (ΔT; used here as a proxy for near-surface static stability), and integrated water vapor transport (IVT) are analyzed to quantify their relationships to surface winds using bivariate linear regression. In four regions where AR landfalls are common, the MERRA-2-based results indicate that IVT accounts for 22-38% of the variance in surface wind speed. Combining ΔT with IVT increases the explained variance to 36-52%. Substitution of QuikSCAT surface winds and AIRS ΔT in place of the MERRA-2 data largely preserves this relationship (e.g., 44% compared to 52% explained variance for USA West Coast). Use of an alternate static stability measure–the bulk Richardson number–yields a similar explained variance (47%). Lastly, AR cases within the top and bottom 25% of near-surface static stability indicate that extreme surface winds (gale or higher) are more likely to occur in unstable conditions (5.3%/14.7% during weak/strong IVT) than in stable conditions (0.58%/6.15%).

2018 ◽  
Vol 19 (7) ◽  
pp. 1097-1113 ◽  
Author(s):  
Andrew Martin ◽  
F. Martin Ralph ◽  
Reuben Demirdjian ◽  
Laurel DeHaan ◽  
Rachel Weihs ◽  
...  

Abstract Accurate forecasts of precipitation during landfalling atmospheric rivers (ARs) are critical because ARs play a large role in water supply and flooding for many regions. In this study, we have used hundreds of observations to verify global and regional model forecasts of atmospheric rivers making landfall in Northern California and offshore in the midlatitude northeast Pacific Ocean. We have characterized forecast error and the predictability limit in AR water vapor transport, static stability, onshore precipitation, and standard atmospheric fields. Analysis is also presented that apportions the role of orographic forcing and precipitation response in driving errors in forecast precipitation after AR landfall. It is found that the global model and the higher-resolution regional model reach their predictability limit in forecasting the atmospheric state during ARs at similar lead times, and both present similar and important errors in low-level water vapor flux, moist-static stability, and precipitation. However, the relative contribution of forcing and response to the incurred precipitation error is very different in the two models. It can be demonstrated using the analysis presented herein that improving water vapor transport accuracy can significantly reduce regional model precipitation errors during ARs, while the same cannot be demonstrated for the global model.


2018 ◽  
Vol 146 (10) ◽  
pp. 3343-3362 ◽  
Author(s):  
Kyle M. Nardi ◽  
Elizabeth A. Barnes ◽  
F. Martin Ralph

AbstractAtmospheric rivers (ARs)—narrow corridors of high atmospheric water vapor transport—occur globally and are associated with flooding and maintenance of the water supply. Therefore, it is important to improve forecasts of AR occurrence and characteristics. Although prior work has examined the skill of numerical weather prediction (NWP) models in forecasting atmospheric rivers, these studies only cover several years of reforecasts from a handful of models. Here, we expand this previous work and assess the performance of 10–30 years of wintertime (November–February) AR landfall reforecasts from the control runs of nine operational weather models, obtained from the International Subseasonal to Seasonal (S2S) Project database. Model errors along the west coast of North America at leads of 1–14 days are examined in terms of AR occurrence, intensity, and landfall location. Occurrence-based skill approaches that of climatology at 14 days, while models are, on average, more skillful at shorter leads in California, Oregon, and Washington compared to British Columbia and Alaska. We also find that the average magnitude of landfall integrated water vapor transport (IVT) error stays fairly constant across lead times, although overprediction of IVT is common at later lead times. Finally, we show that northward landfall location errors are favored in California, Oregon, and Washington, although southward errors occur more often than expected from climatology. These results highlight the need for model improvements, while helping to identify factors that cause model errors.


Author(s):  
Samuel M. Bartlett ◽  
Jason M. Cordeira

AbstractAtmospheric rivers (ARs) are synoptic-scale phenomena associated with long, narrow corridors of enhanced low-level water vapor transport. Landfalling ARs may produce numerous beneficial (e.g. drought amelioration and watershed recharge) and hazardous (e.g. flash flooding and heavy snow) impacts that may require the National Weather Service (NWS) to issue watches, warnings, and advisories (WWAs) for hazardous weather. Prior research on WWAs and ARs in California found that 50–70% of days with flood-related and 60–80% of days with winter weather-related WWAs occurred on days with landfalling ARs in California. The present study further investigates this relationship for landfalling ARs and WWAs during the cool seasons of 2006–2018 across the entire western U.S. and considers additional dimensions of AR intensity and duration. Across the western U.S., regional maxima of 70–90% of days with WWAs issued for any hazard type were associated with landfalling ARs. In the Pacific Northwest and Central regions, flood-related and wind-related WWAs were also more frequently associated with more intense and longer duration ARs. While a large majority of days with WWAs were associated with landfalling ARs, not all landfalling ARs were necessarily associated with WWAs (i.e., not all ARs are hazardous). For example, regional maxima of only 50–70% of AR days were associated with WWAs issued for any hazard type. However, as landfalling AR intensity and duration increased, the association with a WWA and the “hazard footprint” of WWAs increased quasi-exponentially across the western U.S.


2017 ◽  
Vol 18 (5) ◽  
pp. 1359-1374 ◽  
Author(s):  
Benjamin J. Hatchett ◽  
Susan Burak ◽  
Jonathan J. Rutz ◽  
Nina S. Oakley ◽  
Edward H. Bair ◽  
...  

Abstract The occurrence of atmospheric rivers (ARs) in association with avalanche fatalities is evaluated in the conterminous western United States between 1998 and 2014 using archived avalanche reports, atmospheric reanalysis products, an existing AR catalog, and weather station observations. AR conditions were present during or preceding 105 unique avalanche incidents resulting in 123 fatalities, thus comprising 31% of western U.S. avalanche fatalities. Coastal snow avalanche climates had the highest percentage of avalanche fatalities coinciding with AR conditions (31%–65%), followed by intermountain (25%–46%) and continental snow avalanche climates (<25%). Ratios of avalanche deaths during AR conditions to total AR days increased with distance from the coast. Frequent heavy to extreme precipitation (85th–99th percentile) during ARs favored critical snowpack loading rates with mean snow water equivalent increases of 46 mm. Results demonstrate that there exists regional consistency between snow avalanche climates, derived AR contributions to cool season precipitation, and percentages of avalanche fatalities during ARs. The intensity of water vapor transport and topographic corridors favoring inland water vapor transport may be used to help identify periods of increased avalanche hazard in intermountain and continental snow avalanche climates prior to AR landfall. Several recently developed AR forecast tools applicable to avalanche forecasting are highlighted.


2017 ◽  
Vol 18 (9) ◽  
pp. 2577-2596 ◽  
Author(s):  
F. M. Ralph ◽  
S. F. Iacobellis ◽  
P. J. Neiman ◽  
J. M. Cordeira ◽  
J. R. Spackman ◽  
...  

Abstract Aircraft dropsonde observations provide the most comprehensive measurements to date of horizontal water vapor transport in atmospheric rivers (ARs). The CalWater experiment recently more than tripled the number of ARs probed with the required measurements. This study uses vertical profiles of water vapor, wind, and pressure obtained from 304 dropsondes across 21 ARs. On average, total water vapor transport (TIVT) in an AR was 4.7 × 108 ± 2 × 108 kg s−1. This magnitude is 2.6 times larger than the average discharge of liquid water from the Amazon River. The mean AR width was 890 ± 270 km. Subtropical ARs contained larger integrated water vapor (IWV) but weaker winds than midlatitude ARs, although average TIVTs were nearly the same. Mean TIVTs calculated by defining the lateral “edges” of ARs using an IVT threshold versus an IWV threshold produced results that differed by less than 10% across all cases, but did vary between the midlatitudes and subtropical regions.


2015 ◽  
Vol 143 (9) ◽  
pp. 3556-3569 ◽  
Author(s):  
Daniel L. Swain ◽  
Bereket Lebassi-Habtezion ◽  
Noah S. Diffenbaugh

Abstract Atmospheric rivers are long, narrow bands of concentrated atmospheric water vapor transport that provide an important atmospheric linkage between the subtropics and the midlatitudes, facilitating over 90% of meridional water vapor flux and often resulting in extreme precipitation events in regions of enhanced coastal orography. In this investigation, the authors conduct continuous (3 month), large-domain (3600 km × 3200 km), high-resolution (4 km), nonhydrostatic simulations using the Weather Research and Forecasting (WRF) Model and compare the observations to previously reported dropsonde observations from the California Land-Falling Jets Experiment (CALJET) and the Pacific Land-Falling Jets Experiment (PACJET) in order to address an existing gap in knowledge regarding the ability of atmospheric models to simulate the finescale vertical and horizontal structure of atmospheric rivers. The WRF simulations reproduce key structural and thermodynamic characteristics of atmospheric rivers—including well-defined corridors of strong water vapor transport, moist-neutral stability in the lower troposphere, and strong low-level jet/water vapor transport maxima near ~1 km MSL. While WRF does generally capture the extreme values of instantaneous vertically integrated water transport—a defining feature of real-world atmospheric rivers—constituent variables exhibit biases relative to observations, including −11.2% for integrated vapor transport, +5.9% for integrated water vapor, and −17.7% for 1 km MSL wind speed. Findings suggest that high-resolution nonhydrostatic atmospheric simulations are an appropriate tool for investigating atmospheric rivers in contexts where finescale spatial structure and realistic water vapor transport maxima are important.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 368 ◽  
Author(s):  
Zhixing Xie ◽  
Bo Sun

Intensive snowfall events (ISEs) have a profound impact on the society and economy in China during winter. Considering that the interaction between northerly cold advection and southerly water vapor transport (WVT) is generally an essential condition for the occurrence of ISEs in eastern China, this study investigates the different roles of anomalous southerly WVT and northerly cold advection during the ISEs in the North China (NC) and Yangtze River valley (YRV) regions based on a composite analysis of seventy ISE cases in NC and forty ISE cases in the YRV region from 1961 to 2014. The results indicate that the ISEs in NC are mainly associated with a significant pre-conditioning of water vapor over NC induced by southerly WVT anomalies over eastern China, whereas the ISEs in the YRV region are mainly associated with a strengthened Siberian High (SH) and strong northerly cold advection invading the YRV region. These results suggest a dominant role of anomalous southerly WVT in triggering the ISEs in NC and a dominant role of northerly cold advection in triggering the ISEs in the YRV region. The different roles of anomalous southerly WVT and northerly cold advection in the ISEs over the NC and YRV regions are largely attributed to the different winter climate in the NC and YRV regions—during winter, the NC (YRV) region is dominated by cold and dry (relatively warm and moist) air flow and hence southerly WVT (northerly cold advection) is the key factor for triggering the ISEs in NC (the YRV region).


2015 ◽  
Vol 96 (8) ◽  
pp. 1243-1255 ◽  
Author(s):  
H. F. Dacre ◽  
P. A. Clark ◽  
O. Martinez-Alvarado ◽  
M. A. Stringer ◽  
D. A. Lavers

Abstract The term “atmospheric river” is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high-impact flooding events. However, there remains some debate as to how these filaments form. In this paper, the authors analyze the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front that sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone’s warm sector, not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the center of a cyclone (as suggested by the term “atmospheric river”), these filaments are, in fact, the result of water vapor exported from the cyclone, and thus they represent the footprints left behind as cyclones travel poleward from the subtropics.


2016 ◽  
Vol 49 (1-2) ◽  
pp. 297-312 ◽  
Author(s):  
S. S. V. S. Ramakrishna ◽  
V. Brahmananda Rao ◽  
B. R. Srinivasa Rao ◽  
D. Hari Prasad ◽  
N. Nanaji Rao ◽  
...  

2018 ◽  
Vol 19 (2) ◽  
pp. 321-337 ◽  
Author(s):  
Bin Guan ◽  
Duane E. Waliser ◽  
F. Martin Ralph

Abstract A recent study presented nearly two decades of airborne atmospheric river (AR) observations and concluded that, on average, an individual AR transports ~5 × 108 kg s−1 of water vapor. The study here compares those cases to ARs independently identified in reanalyses based on a refined algorithm that can detect less well-structured ARs, with the dual-purpose of validating reanalysis ARs against observations and evaluating dropsonde representativeness relative to reanalyses. The first comparison is based on 21 dropsonde-observed ARs in the northeastern Pacific and those closely matched, but not required to be exactly collocated, in ERA-Interim (MERRA-2), which indicates a mean error of −2% (−8%) in AR width and +3% (−1%) in total integrated water vapor transport (TIVT) and supports the effectiveness of the AR detection algorithm applied to the reanalyses. The second comparison is between the 21 dropsonde ARs and ~6000 ARs detected in ERA-Interim (MERRA-2) over the same domain, which indicates a mean difference of 5% (20%) in AR width and 5% (14%) in TIVT and suggests the limited number of dropsonde observations is a highly (reasonably) representative sampling of ARs in the northeastern Pacific. Sensitivities of the comparison to seasonal and geographical variations in AR width/TIVT are also examined. The results provide a case where dedicated observational efforts in specific regions corroborate with global reanalyses in better characterizing the geometry and strength of ARs regionally and globally. The results also illustrate that the reanalysis depiction of ARs can help inform the selection of locations for future observational and modeling efforts.


Sign in / Sign up

Export Citation Format

Share Document