scholarly journals Role of Equatorial Basin-Mode Resonance for the Seasonal Variability of the Angola Current at 11°S

2018 ◽  
Vol 48 (2) ◽  
pp. 261-281 ◽  
Author(s):  
Robert Kopte ◽  
Peter Brandt ◽  
Martin Claus ◽  
Richard J. Greatbatch ◽  
Marcus Dengler

AbstractMultiyear moored velocity observations of the Angola Current near 11°S reveal a weak southward mean flow superimposed by substantial intraseasonal to seasonal variability, including annual and semiannual cycles with distinct baroclinic structures. In the equatorial Atlantic these oscillations are associated with basin-mode resonances of the fourth and second baroclinic modes, respectively. Here, the role of basin-mode resonance and local forcing for the Angola Current seasonality is investigated. A suite of linear shallow-water models for the tropical Atlantic is employed, each model representing a single baroclinic mode forced at a specific period. The annually and semiannually oscillating forcing is given by 1) an idealized zonally uniform zonal forcing restricted to the equatorial band corresponding to a remote equatorial forcing or 2) realistic, spatially varying Fourier components of wind stress data that include local forcing off Angola, particularly alongshore winds. Model-computed modal amplitudes are scaled to match moored velocity observations from the equatorial Atlantic. The observed annual cycle of alongshore velocity at 11°S is well reproduced by the remote equatorial forcing. Including local forcing slightly improves the agreement between observed and simulated semiannual oscillations at 11°S compared to the purely equatorial forcing. However, the model-computed semiannual cycle lacks amplitude at middepth. This could be the result of either underestimating the strength of the second equatorial basin mode of the fourth baroclinic mode or other processes not accounted for in the shallow-water models. Overall, the findings underline the importance of large-scale linear equatorial wave dynamics for the seasonal variability of the boundary circulation off Angola.

2018 ◽  
Vol 161 ◽  
pp. 136-154 ◽  
Author(s):  
Hamidreza Shirkhani ◽  
Abdolmajid Mohammadian ◽  
Ousmane Seidou ◽  
Hazim Qiblawey

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


2013 ◽  
Vol 19 (2) ◽  
pp. 35-41 ◽  
Author(s):  
Hidekazu Yoshioka ◽  
Nobuhiko Kinjo ◽  
Ayaka Wakazono ◽  
Koichi Unami ◽  
Masayuki Fujihara

Author(s):  
Emmanuel Audusse ◽  
Marie-Odile Bristeau

Finite-Volume Solvers for a Multilayer Saint-Venant SystemWe consider the numerical investigation of two hyperbolic shallow water models. We focus on the treatment of the hyperbolic part. We first recall some efficient finite volume solvers for the classical Saint-Venant system. Then we study their extensions to a new multilayer Saint-Venant system. Finally, we use a kinetic solver to perform some numerical tests which prove that the 2D multilayer Saint-Venant system is a relevant alternative to 3D hydrostatic Navier-Stokes equations.


Sign in / Sign up

Export Citation Format

Share Document