A Wind-Induced Thermohaline Circulation Hysteresis and Millennial Variability Regimes

2007 ◽  
Vol 37 (10) ◽  
pp. 2446-2457 ◽  
Author(s):  
Yosef Ashkenazy ◽  
Eli Tziperman

Abstract The multiple equilibria of the thermohaline circulation (THC: used here in the sense of the meridional overturning circulation) as function of the surface freshwater flux has been studied intensively following a Stommel paper from 1961. It is shown here that multistability and hysteresis of the THC also exist when the wind stress amplitude is varied as a control parameter. Both the Massachusetts Institute of Technology ocean general circulation model (MITgcm) and a simple three-box model are used to study and explain different dynamical regimes of the THC and THC variability as a function of the wind stress amplitude. Starting with active winds and a thermally dominant thermohaline circulation state, the wind stress amplitude is slowly reduced to zero over a time period of ∼40 000 yr (40 kyr) and then increased again to its initial value over another ∼40 kyr. It is found that during the decreasing wind stress phase, the THC remains thermally dominant until very low wind stress amplitude at which pronounced Dansgaard–Oeschger-like THC relaxation oscillations are initiated. However, while the wind stress amplitude is increased, these relaxation oscillations are present up to significantly larger wind stress amplitude. The results of this study thus suggest that under the same wind stress amplitude, the THC can be either in a stable thermally dominant state or in a pronounced relaxation oscillations state. The simple box model analysis suggests that the observed hysteresis is due to the combination of the Stommel hysteresis and the Winton and Sarachik “deep decoupling” oscillations.

Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 907-921 ◽  
Author(s):  
M. Ballarotta ◽  
S. Falahat ◽  
L. Brodeau ◽  
K. Döös

Abstract. The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude–salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimate of the timescale of the circulation reveals a sluggish abyssal circulation during the LGM, and a Conveyor Belt circulation that is more vigorous due to the combination of a stronger wind stress and a shortened circulation route.


2004 ◽  
Vol 17 (23) ◽  
pp. 4498-4511 ◽  
Author(s):  
Michael Vellinga ◽  
Peili Wu

Abstract Variability of the thermohaline circulation (THC) has been analyzed in a long control simulation by the Met Office's Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). It is shown that internal THC variability in the coupled climate system is concentrated at interannual and centennial time scales, with the centennial mode being dominant. Centennial oscillations of the THC can impact surface climate via an interhemispheric SST contrast of 0.1°C in the Tropics and more than 0.5°C in mid- and high latitudes. A mechanism is proposed based on detailed process analysis involving large-scale air–sea interaction on multidecadal time scales. Anomalous northward ocean heat transport associated with a strong phase of the Atlantic THC generates a cross-equatorial SST gradient. This causes the ITCZ to move to a more northerly position with increased strength. The extra rainfall resulting from the anomalous ITCZ imposes a freshwater flux and produces a salinity anomaly in the tropical North Atlantic. Such sustained salinity anomalies slowly propagate toward the subpolar North Atlantic at a lag of 5–6 decades. The accumulated low-salinity water lowers upper-ocean density, which causes the THC to slow down. The oscillation then enters the opposite phase.


2009 ◽  
Vol 39 (7) ◽  
pp. 1715-1728 ◽  
Author(s):  
L. Shogo Urakawa ◽  
Hiroyasu Hasumi

Abstract The energy budget of global thermohaline circulation (THC) is numerically investigated using an ocean general circulation model (OGCM) under a realistic configuration. Earlier studies just discuss a globally integrated energy budget. This study intends to draw a comprehensive picture of the global THC by separately calculating the energy budgets for three basins (the Atlantic, Indo-Pacific, and Southern Ocean). The largest mechanical energy source is a kinetic energy (KE) input to the general circulation by wind. Of that, 0.3 TW is converted to gravitational potential energy (GPE), and 80% of the energy conversion occurs in the Southern Ocean. Almost the same quantity of GPE is supplied by vertical mixing. Injected GPE is almost equally dissipated by convective adjustment and the effect of cabbeling, and a large part of that is consumed in the Southern Ocean. A dominant role of the Southern Ocean in the energy balance of THC and importance of the interbasin transport of GPE are found. Then, the enhancement of the meridional overturning circulation in the Atlantic induced by wind in the Southern Ocean is examined. Calculating the energy budget anomaly enables the authors to identify its mechanism as a component of THC.


2005 ◽  
Vol 35 (6) ◽  
pp. 933-948 ◽  
Author(s):  
Henk A. Dijkstra ◽  
Wilbert Weijer

Abstract A study of the stability of the global ocean circulation is performed within a coarse-resolution general circulation model. Using techniques of numerical bifurcation theory, steady states of the global ocean circulation are explicitly calculated as parameters are varied. Under a freshwater flux forcing that is diagnosed from a reference circulation with Levitus surface salinity fields, the global ocean circulation has no multiple equilibria. It is shown how this unique-state regime transforms into a regime with multiple equilibria as the pattern of the freshwater flux is changed in the northern North Atlantic Ocean. In the multiple-equilibria regime, there are two branches of stable steady solutions: one with a strong northern overturning in the Atlantic and one with hardly any northern overturning. Along the unstable branch that connects both stable solution branches (here for the first time computed for a global ocean model), the strength of the southern sinking in the South Atlantic changes substantially. The existence of the multiple-equilibria regime critically depends on the spatial pattern of the freshwater flux field and explains the hysteresis behavior as found in many previous modeling studies.


2004 ◽  
Vol 34 (11) ◽  
pp. 2541-2564 ◽  
Author(s):  
Richard D. Smith ◽  
Peter R. Gent

Abstract An anisotropic generalization of the Gent–McWilliams (GM) parameterization is presented for eddy-induced tracer transport and diffusion in ocean models, and it is implemented in an ocean general circulation model using a functional formalism to derive the spatial discretization. This complements the anisotropic viscosity parameterization recently developed by Smith and McWilliams. The anisotropic GM operator is potentially useful in both coarse- and high-resolution ocean models, and in this study the focus is on its application in high-resolution eddying solutions, for which it provides an adiabatic alternative to the more commonly used biharmonic horizontal diffusion operators. It is shown that realistically high levels of eddy energy can be simulated using harmonic anisotropic diffusion and friction operators. Isotropic forms can also be used, but these tend either to overly damp the solution when a large diffusion coefficient is used or to introduce unacceptable levels of numerical noise when a small coefficient is used. A series of numerical simulations of the North Atlantic Ocean are conducted at 0.2° resolution using anisotropic viscosity, anisotropic GM, and biharmonic mixing operators to investigate the effects of the anisotropic forms and to isolate changes in the solutions specifically associated with anisotropic GM. A high-resolution 0.1° simulation is then conducted using both anisotropic forms, and the results are compared with a similar run using biharmonic mixing. Modest improvements are seen in the mean wind-driven circulation with the anisotropic forms, but the largest effects are due to the anisotropic GM parameterization, which eliminates the spurious diapycnal diffusion inherent in horizontal tracer diffusion. This leads to significant improvements in the model thermohaline circulation, including the meridional heat transport, meridional overturning circulation, and deep-water formation and convection in the Labrador Sea.


2021 ◽  
Author(s):  
Zhao Liu ◽  
Shaoqing Zhang ◽  
Yang Shen ◽  
Yuping Guan ◽  
Xiong Deng

Abstract. The multiple equilibria are an outstanding characteristic of the Atlantic meridional overturning circulation (AMOC) that has important impacts on the Earth climate system appearing as regime transitions. The AMOC can be simulated in different models but the behavior deviates from the real world due to the existence of model errors. Here, we first combine a general AMOC model with an ensemble Kalman filter to form an ensemble coupled model data assimilation and parameter estimation (CDAPE) system, and derive the general methodology to capture the observed AMOC regime transitions through utilization of observational information. Then we apply this methodology designed within a twin experiment framework with a simple conceptual model that simulates the transition phenomenon of AMOC multiple equilibria, as well as a more physics-based MOC box model to reconstruct the observed AMOC multiple equilibria. The results show that the coupled model parameter estimation with observations can significantly mitigate the model deviations, thus capturing regime transitions of the AMOC. This simple model study serves as a guideline when a coupled general circulation model is used to incorporate observations to reconstruct the AMOC historical states and make multi-decadal climate predictions.


Author(s):  
Jonathan A. Baker ◽  
Andrew J. Watson ◽  
Geoffrey K. Vallis

AbstractThe response of the meridional overturning circulation (MOC) to changes in Southern Ocean (SO) zonal wind forcing and Pacific basin vertical diffusivity is investigated under varying buoyancy forcings, corresponding to ‘warm’, ‘present-day’ and ‘cold’ states, in a two-basin general circulation model connected by a southern circumpolar channel. We find that the Atlantic MOC (AMOC) strengthens with increased SO wind stress or diffusivity in the model Pacific, under all buoyancy forcings. The sensitivity of the AMOC to wind stress increases as the buoyancy forcing is varied from a warm to a present-day or cold state, whereas it is most sensitive to the Pacific diffusivity in a present-day or warm state. Similarly, the AMOC is more sensitive to buoyancy forcing over the Southern Ocean under reduced wind stress or enhanced Pacific diffusivity. These results arise because of the increased importance of the Pacific pathway in the warmer climates, giving an increased linkage between the basins and so the opportunity for the diffusivity in the Pacific to affect the overturning in the Atlantic. In cooler states, such as in glacial climates, the two basins are largely decoupled and the wind strength over the SO is the primary determinant of the AMOC strength. Both wind- and diffusively-driven upwelling sustain the AMOC in the warmer (present-day) state. Changes in SO wind stress alone do not shoal the AMOC to resemble that observed at the last glacial maximum; changes in the buoyancy forcing are also needed to decouple the two basins.


2011 ◽  
Vol 24 (7) ◽  
pp. 1965-1984 ◽  
Author(s):  
Olivier Arzel ◽  
Matthew H. England ◽  
Oleg A. Saenko

Abstract Recent results based on models using prescribed surface wind stress forcing have suggested that the net freshwater transport Σ by the Atlantic meridional overturning circulation (MOC) into the Atlantic basin is a good indicator of the multiple-equilibria regime. By means of a coupled climate model of intermediate complexity, this study shows that this scalar Σ cannot capture the connection between the properties of the steady state and the impact of the wind stress feedback on the evolution of perturbations. This implies that, when interpreting the observed value of Σ, the position of the present-day climate is systematically biased toward the multiple-equilibria regime. The results show, however, that the stabilizing influence of the wind stress feedback on the MOC is restricted to a narrow window of freshwater fluxes, located in the vicinity of the state characterized by a zero freshwater flux divergence over the Atlantic basin. If the position of the present-day climate is farther away from this state, then wind stress feedbacks are unable to exert a persistent effect on the modern MOC. This is because the stabilizing influence of the shallow reverse cell situated south of the equator during the off state rapidly dominates over the destabilizing influence of the wind stress feedback when the freshwater forcing gets stronger. Under glacial climate conditions by contrast, a weaker sensitivity with an opposite effect is found. This is ultimately due to the relatively large sea ice extent of the glacial climate, which implies that, during the off state, the horizontal redistribution of fresh waters by the subpolar gyre does not favor the development of a thermally direct MOC as opposed to the modern case.


2013 ◽  
Vol 43 (3) ◽  
pp. 507-532 ◽  
Author(s):  
David R. Munday ◽  
Helen L. Johnson ◽  
David P. Marshall

Abstract This study uses a sector configuration of an ocean general circulation model to examine the sensitivity of circumpolar transport and meridional overturning to changes in Southern Ocean wind stress and global diapycnal mixing. At eddy-permitting, and finer, resolution, the sensitivity of circumpolar transport to forcing magnitude is drastically reduced. At sufficiently high resolution, there is little or no sensitivity of circumpolar transport to wind stress, even in the limit of no wind. In contrast, the meridional overturning circulation continues to vary with Southern Ocean wind stress, but with reduced sensitivity in the limit of high wind stress. Both the circumpolar transport and meridional overturning continue to vary with diapycnal diffusivity at all model resolutions. The circumpolar transport becomes less sensitive to changes in diapycnal diffusivity at higher resolution, although sensitivity always remains. In contrast, the overturning circulation is more sensitive to change in diapycnal diffusivity when the resolution is high enough to permit mesoscale eddies.


2007 ◽  
Vol 1 (2) ◽  
pp. 351-383 ◽  
Author(s):  
G. Krinner ◽  
N. Julien

Abstract. We present atmospheric general circulation model simulations of the present (1981–2005) and future (2081–2100) climate according to the SRES A1B greenhouse gas scenario. Focusing on Greenland, we use a stretched grid in the global model, thereby reaching a horizontal grid spacing of 60 km in the region of interest. This allows to capture reasonably the escarpment zone of the ice sheet. For the end of this century, the model suggests a precipitation increase in the central region of Greenland, which is overcompensated for by a strong increase of meltwater production in the lower areas. We calculate the changes of water fluxes into the adjacent seas according the simulated surface mass balances changes. The calculated freshwater flux at the end of the 21st century appears too weak to induce a significant reduction of the meridional overturning circulation in the North Atlantic. The resulting surface mass balance decrease between the last decades of the 20th and 21st centuries is equivalent to a positive contribution of 0.8 mm yr−1 to global eustatic sea-level rise.


Sign in / Sign up

Export Citation Format

Share Document