scholarly journals Comparison of Cloud Microphysics Schemes in a Warn-on-Forecast System Using Synthetic Satellite Objects

2018 ◽  
Vol 33 (6) ◽  
pp. 1681-1708 ◽  
Author(s):  
Thomas A. Jones ◽  
Patrick Skinner ◽  
Kent Knopfmeier ◽  
Edward Mansell ◽  
Patrick Minnis ◽  
...  

AbstractForecasts of high-impact weather conditions using convection-allowing numerical weather prediction models have been found to be highly sensitive to the selection of cloud microphysics scheme used within the system. The Warn-on-Forecast (WoF) project has developed a rapid-cycling, convection-allowing, data assimilation and forecasting system known as the NSSL Experimental WoF System for ensembles (NEWS-e), which is designed to utilize advanced cloud microphysics schemes. NEWS-e currently (2017–18) uses the double-moment NSSL variable density scheme (NVD), which has been shown to generate realistic representations of convective precipitation within the system. However, very little verification on nonprecipitating cloud features has been performed with this system. During the 2017 Hazardous Weather Testbed (HWT) experiment, an overestimation of the areal coverage of convectively generated cirrus clouds was observed. Changing the cloud microphysics scheme to Thompson generated more accurate cloud fields. This research undertook the task of improving the cloud analysis generated by NVD while maintaining its skill for other variables such as reflectivity. Adjustments to cloud condensation nuclei (CCN), fall speed, and collection efficiencies were made and tested over a set of six severe weather cases occurring during May 2017. This research uses an object-based verification approach in which objects of cold infrared brightness temperatures, high cloud-top pressures, and cloud water path are generated from model output and compared against GOES-13 observations. Results show that the modified NVD scheme generated much more skillful forecasts of cloud objects than the original formulation without having a negative impact on the skill of simulated composite reflectivity forecasts.

2020 ◽  
Vol 20 (18) ◽  
pp. 10997-11024
Author(s):  
Hamish Gordon ◽  
Paul R. Field ◽  
Steven J. Abel ◽  
Paul Barrett ◽  
Keith Bower ◽  
...  

Abstract. Representing the number and mass of cloud and aerosol particles independently in a climate, weather prediction or air quality model is important in order to simulate aerosol direct and indirect effects on radiation balance. Here we introduce the first configuration of the UK Met Office Unified Model in which both cloud and aerosol particles have “double-moment” representations with prognostic number and mass. The GLObal Model of Aerosol Processes (GLOMAP) aerosol microphysics scheme, already used in the Hadley Centre Global Environmental Model version 3 (HadGEM3) climate configuration, is coupled to the Cloud AeroSol Interacting Microphysics (CASIM) cloud microphysics scheme. We demonstrate the performance of the new configuration in high-resolution simulations of a case study defined from the CLARIFY aircraft campaign in 2017 near Ascension Island in the tropical southern Atlantic. We improve the physical basis of the activation scheme by representing the effect of existing cloud droplets on the activation of new aerosol, and we also discuss the effect of unresolved vertical velocities. We show that neglect of these two competing effects in previous studies led to compensating errors but realistic droplet concentrations. While these changes lead only to a modest improvement in model performance, they reinforce our confidence in the ability of the model microphysics code to simulate the aerosol–cloud microphysical interactions it was designed to represent. Capturing these interactions accurately is critical to simulating aerosol effects on climate.


2015 ◽  
Vol 30 (6) ◽  
pp. 1571-1589 ◽  
Author(s):  
Ki-Hong Min ◽  
Sunhee Choo ◽  
Daehyung Lee ◽  
Gyuwon Lee

Abstract The Korea Meteorological Administration (KMA) implemented a 10-yr project to develop its own global model (GM) by 2020. To reflect the complex topography and unique weather characteristics of the Korean Peninsula, a high-resolution model with accurate physics and input data is required. The WRF single-moment 6-class microphysics scheme (WSM6) and WRF double-moment 6-class microphysics scheme (WDM6) that will be implemented in the Korea GM (KGM) are evaluated. Comparisons of the contoured frequency by altitude diagram (CFAD), time–height cross sections, and vertical profiles of hydrometeors are utilized to assess the two schemes in simulating summer monsoon and convective precipitation cases over the Korean Peninsula during 2011. The results show that WSM6 and WDM6 overestimate the height of the melting level and bright band as compared to radar observations. However, the accuracy of WDM6 is in better agreement with radar observations. This is attributed to the difference in the sedimentation process simulated by the additional second-moment total number concentrations of liquid-phase particles in WDM6. WDM6 creates larger raindrops and higher relative humidity beneath the melting layer, allowing the scheme to simulate a more realistic reflectivity profile than WSM6 for the summer monsoon case. However, for the convective case, both schemes underestimate the precipitation and there is resolution dependence in the WRF Model’s ability to simulate convective precipitation.


2020 ◽  
Author(s):  
Hamish Gordon ◽  
Paul R. Field ◽  
Steven J. Abel ◽  
Paul Barrett ◽  
Keith Bower ◽  
...  

Abstract. Representing the number and mass of cloud and aerosol particles independently in a climate, weather prediction or air quality model is important in order to simulate aerosol direct and indirect effects on radiation balance. Here we introduce the first configuration of the UK Met Office Unified Model in which both cloud and aerosol particles have double-moment representations with prognostic number and mass. The GLOMAP aerosol microphysics scheme, already used in the HadGEM3 climate configuration, is coupled to the CASIM cloud microphysics scheme. We demonstrate the performance of the new configuration in cloud-resolving simulations of a case study defined from the CLARIFY aircraft campaign in 2017 near Ascension Island in the tropical south Atlantic. We improve the physical basis of the activation scheme by representing the effect of existing cloud droplets on the activation of new aerosol, and we also attempt to account for the effect of unresolved vertical velocities. The first of these improvements should be applicable to the representation of aerosol activation in other microphysics schemes. While these changes lead only to a modest improvement in model performance, they reinforce our confidence in the ability of the model to simulate aerosol-cloud microphysical interactions. Capturing these interactions accurately is critical to simulating aerosol effects on climate.


2020 ◽  
Vol 12 (21) ◽  
pp. 3473
Author(s):  
Konstantinos Tsarpalis ◽  
Petros Katsafados ◽  
Anastasios Papadopoulos ◽  
Nikolaos Mihalopoulos

In this study, the performance and characteristics of the advanced cloud nucleation scheme of Fountoukis and Nenes, embedded in the fully coupled Weather Research and Forecasting/Chemistry (WRF/Chem) model, are investigated. Furthermore, the impact of dust particles on the distribution of the cloud condensation nuclei (CCN) and the way they modify the pattern of the precipitation are also examined. For the simulation of dust particle concentration, the Georgia Tech Goddard Global Ozone Chemistry Aerosol Radiation and Transport of Air Force Weather Agency (GOCART-AFWA) is used as it includes components for the representation of dust emission and transport. The aerosol activation parameterization scheme of Fountoukis and Nenes has been implemented in the six-class WRF double-moment (WDM6) microphysics scheme, which treats the CCN distribution as a prognostic variable, but does not take into account the concentration of dust aerosols. Additionally, the presence of dust particles that may facilitate the activation of CCN into cloud or rain droplets has also been incorporated in the cumulus scheme of Grell and Freitas. The embedded scheme is assessed through a case study of significant dust advection over the Western Mediterranean, characterized by severe rainfall. Inclusion of CCN based on prognostic dust particles leads to the suppression of precipitation over hazy areas. On the contrary, precipitation is enhanced over areas away from the dust event. The new prognostic CCN distribution improves in general the forecasting skill of the model as bias scores, the root mean square error (RMSE), false alarm ratio (FAR) and frequencies of missed forecasts (FOM) are limited when modelled data are compared against satellite, LIDAR and aircraft observations.


2010 ◽  
Vol 138 (5) ◽  
pp. 1587-1612 ◽  
Author(s):  
Kyo-Sun Sunny Lim ◽  
Song-You Hong

Abstract A new double-moment bulk cloud microphysics scheme, the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) Microphysics scheme, which is based on the WRF Single-Moment 6-class (WSM6) Microphysics scheme, has been developed. In addition to the prediction for the mixing ratios of six water species (water vapor, cloud droplets, cloud ice, snow, rain, and graupel) in the WSM6 scheme, the number concentrations for cloud and rainwater are also predicted in the WDM6 scheme, together with a prognostic variable of cloud condensation nuclei (CCN) number concentration. The new scheme was evaluated on an idealized 2D thunderstorm test bed. Compared to the simulations from the WSM6 scheme, there are greater differences in the droplet concentration between the convective core and stratiform region in WDM6. The reduction of light precipitation and the increase of moderate precipitation accompanying a marked radar bright band near the freezing level from the WDM6 simulation tend to alleviate existing systematic biases in the case of the WSM6 scheme. The strength of this new microphysics scheme is its ability to allow flexibility in variable raindrop size distribution by predicting the number concentrations of clouds and rain, coupled with the explicit CCN distribution, at a reasonable computational cost.


2017 ◽  
Vol 145 (12) ◽  
pp. 4911-4936 ◽  
Author(s):  
Jonathan Labriola ◽  
Nathan Snook ◽  
Youngsun Jung ◽  
Bryan Putnam ◽  
Ming Xue

Explicit prediction of hail using numerical weather prediction models remains a significant challenge; microphysical uncertainties and errors are a significant contributor to this challenge. This study assesses the ability of storm-scale ensemble forecasts using single-moment Lin or double-moment Milbrandt and Yau microphysical schemes in predicting hail during a severe weather event over south-central Oklahoma on 10 May 2010. Radar and surface observations are assimilated using an ensemble Kalman filter (EnKF) at 5-min intervals. Three sets of ensemble forecasts, launched at 15-min intervals, are then produced from EnKF analyses at times ranging from 30 min prior to the first observed hail to the time of the first observed hail. Forty ensemble members are run at 500-m horizontal grid spacing in both EnKF assimilation cycles and subsequent forecasts. Hail forecasts are verified using radar-derived products including information from single- and dual-polarization radar data: maximum estimated size of hail (MESH), hydrometeor classification algorithm (HCA) output, and hail size discrimination algorithm (HSDA) output. Resulting hail forecasts show at most marginal skill, with the level of skill dependent on the forecast initialization time and microphysical scheme used. Forecasts using the double-moment scheme predict many small hailstones aloft, while the single-moment members predict larger hailstones. Near the surface, double-moment members predict larger hailstone sizes than their single-member counterparts. Hail in the forecasts is found to melt too quickly near the surface for members using either of the microphysics schemes examined. Analysis of microphysical budgets in both schemes indicates that both schemes suboptimally represent hail processes, adversely impacting the skill of surface hail forecasts.


2018 ◽  
Vol 210 ◽  
pp. 04033 ◽  
Author(s):  
David Šaur ◽  
Kateřina Víchová

This article focuses on the forecasting of flash floods using the Algorithm of Storm Prediction as a new tool to predict convective precipitation, severe phenomena and the risk of flash floods. The first part of the article contains information on methods for predicting dangerous severe phenomena. This algorithm uses mainly data from numerical weather prediction models (NWP models), database of historic weather events and relief characteristics describing the influence of orography on the initiation of atmospheric convection. The result section includes verification of predicted algorithm outputs, selected NWP models and warnings of CHMI and ESTOFEX on three events related to the floods that hit the Zlín Region between years of 2015 - 2017. The main result is a report with prediction outputs of the algorithm visualized in maps for the territory of municipalities with extended competence and their regions. The outputs of the algorithm will be used primarily to increase the effectiveness of preventive measures against flash floods not only by the Fire Rescue Service of Czech Republic but also by the flood and crisis management authorities.


2007 ◽  
Vol 135 (8) ◽  
pp. 2854-2868 ◽  
Author(s):  
Changhai Liu ◽  
Mitchell W. Moncrieff

Abstract This paper investigates the effects of cloud microphysics parameterizations on simulations of warm-season precipitation at convection-permitting grid spacing. The objective is to assess the sensitivity of summertime convection predictions to the bulk microphysics parameterizations (BMPs) at fine-grid spacings applicable to the next generation of operational numerical weather prediction models. Four microphysical parameterization schemes are compared: simple ice (Dudhia), four-class mixed phase (Reisner et al.), Goddard five-class mixed phase (Tao and Simpson), and five-class mixed phase with graupel (Reisner et al.). The experimentation involves a 7-day episode (3–9 July 2003) of U.S. midsummer convection under moderate large-scale forcing. Overall, the precipitation coherency manifested as eastward-moving organized convection in the lee of the Rockies is insensitive to the choice of the microphysics schemes, and the latent heating profiles are also largely comparable among the BMPs. The upper-level condensate and cloudiness, upper-level radiative cooling/heating, and rainfall spectrum are the most sensitive, whereas the domain-mean rainfall rate and areal coverage display moderate sensitivity. Overall, the three mixed-phase schemes outperform the simple ice scheme, but a general conclusion about the degree of sophistication in the microphysics treatment and the performance is not achievable.


2013 ◽  
Vol 30 (12) ◽  
pp. 2896-2906 ◽  
Author(s):  
J. Mielikainen ◽  
B. Huang ◽  
H.-L. A. Huang ◽  
M. D. Goldberg ◽  
A. Mehta

Abstract The Weather Research and Forecasting model (WRF) double-moment 6-class microphysics scheme (WDM6) implements a double-moment bulk microphysical parameterization of clouds and precipitation and is applicable in mesoscale and general circulation models. WDM6 extends the WRF single-moment 6-class microphysics scheme (WSM6) by incorporating the number concentrations for cloud and rainwater along with a prognostic variable of cloud condensation nuclei (CCN) number concentration. Moreover, it predicts the mixing ratios of six water species (water vapor, cloud droplets, cloud ice, snow, rain, and graupel), similar to WSM6. This paper describes improving the computational performance of WDM6 by exploiting its inherent fine-grained parallelism using the NVIDIA graphics processing unit (GPU). Compared to the single-threaded CPU, a single GPU implementation of WDM6 obtains a speedup of 150× with the input/output (I/O) transfer and 206× without the I/O transfer. Using four GPUs, the speedup reaches 347× and 715×, respectively.


Sign in / Sign up

Export Citation Format

Share Document