scholarly journals Long-Term Stability of Lorazepam in Sodium Chloride 0.9% Stored at Different Temperatures in Different Containers

2019 ◽  
Vol 55 (3) ◽  
pp. 188-192
Author(s):  
M. L. Colsoul ◽  
A. Breuer ◽  
N. Goderniaux ◽  
J. D. Hecq ◽  
L. Soumoy ◽  
...  

Background and Objective: Infusion containing lorazepam is used by geriatric department to limit anxiety disorders in the elderly. Currently, these infusions are prepared according to demand by the nursing staff, but the preparation in advance in a centralized service could improve quality of preparation and time management. The aim of this study was to investigate the long-term stability of this infusion in polypropylene syringes stored at 5 ± 3°C. Then, results obtained were compared with stability data of lorazepam in syringes stored at room temperature, glass bottles at 5 ± 3°C, and glass bottles at room temperature. Method: Eight syringes and 6 bottles of infusion were prepared by diluting 1 mL lorazepam 4 mg in 23 mL of NaCl 0.9% under aseptic conditions. Five syringes and 3 bottles were stored at 5 ± 3°C and 3 syringes and 3 bottles were stored at room temperature for 30 days. During the storage period, particle appearance or color change were periodically checked by visual and microscope inspection. Turbidity was assessed by measurements of optical density (OD) at 3 wavelengths (350 nm, 410 nm, 550 nm). The stability of pH was also evaluated. The lorazepam concentrations were measured at each time point by high-performance liquid chromatography with ultraviolet detector at 220 nm. Results: Solutions were physically unstable in syringes at 5 ± 3°C after 4 days: crystals and a drop of OD at 350 nm were observed. However, pH was stable. After 2 days, solutions were considered as chemically unstable because a loss of lorazepam concentration higher than 10% was noticed: the lower 1-sided confidence limit at 95% was below 90% of the initial concentration. To assess temperature and polypropylene influence, results were compared with those obtained for syringes at room temperature and bottles at 5 ± 3°C and room temperature. Precipitation, drop of OD at 350 nm, and chemical instability were observed in all conditions. Conclusion: Solutions of lorazepam were unstable after 2 days in syringes at 5 ± 3°C. Preparation in advance appears, therefore, not possible for the clinical use. Storage conditions (temperature and form) do not improve the stability.

2020 ◽  
Vol 30 (2) ◽  
pp. 234-241
Author(s):  
Lara Milevoj Kopcinovic ◽  
Marija Brcic ◽  
Jelena Culej ◽  
Marijana Miler ◽  
Nora Nikolac Gabaj ◽  
...  

Introduction: Our aim was to investigate the stability of clinically relevant analytes in pleural and peritoneal fluids stored in variable time periods and variable storage temperatures prior to analysis. Materials and methods: Baseline total proteins (TP), albumin (ALB), lactate dehydrogenase (LD), cholesterol (CHOL), triglycerides (TRIG), creatinine (CREA), urea, glucose and amylase (AMY) were measured using standard methods in residual samples from 29 pleural and 12 peritoneal fluids referred to our laboratory. Aliquots were stored for 6 hours at room temperature (RT); 3, 7, 14 and 30 days at - 20°C. At the end of each storage period, all analytes were re-measured. Deviations were calculated and compared to stability limits (SL). Results: Pleural fluid TP and CHOL did not differ in the observed storage periods (P = 0.265 and P = 0.170, respectively). Statistically significant differences were found for ALB, LD, TRIG, CREA, urea, glucose and AMY. Peritoneal fluid TP, ALB, TRIG, urea and AMY were not statistically different after storage, contrary to LD, CHOL, CREA and glucose. Deviations for TP, ALB, CHOL, TRIG, CREA, urea and AMY in all storage periods tested for both serous fluids were within the SL. Deviations exceeding SL were observed for LD and glucose when stored for 3 and 7 days at - 20°C, respectively. Conclusions: TP, ALB, CHOL, TRIG, CREA, urea and AMY are stable in serous samples stored up to 6 hours at RT and/or 30 days at - 20°C. Glucose is stable up to 6 hours at RT and 3 days at - 20°C. The stability of LD in is limited to 6 hours at RT.


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 28-34
Author(s):  
Mahmoud Samadpour ◽  
Mahsa Heydari ◽  
Mahdi Mohammadi ◽  
Parisa Parand ◽  
Nima Taghavinia

Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6521-6525 ◽  
Author(s):  
Ming Zhuo ◽  
Yuejiao Chen ◽  
Tao Fu ◽  
Haonan Zhang ◽  
Zhi Xu ◽  
...  

Ni(SO4)0.3(OH)1.4 nanobelts are utilized in a humidity sensor by a facile method. The nanobelt based sensor shows a high sensitivity, fast response and long-term stability in the sensing process.


2013 ◽  
Vol 23 (11) ◽  
pp. 2129-2154 ◽  
Author(s):  
HÉLÈNE BARUCQ ◽  
JULIEN DIAZ ◽  
VÉRONIQUE DUPRAT

This work deals with the stability analysis of a one-parameter family of Absorbing Boundary Conditions (ABC) that have been derived for the acoustic wave equation. We tackle the problem of long-term stability of the wave field both at the continuous and the numerical levels. We first define a function of energy and show that it is decreasing in time. Its discrete form is also decreasing under a Courant–Friedrichs–Lewy (CFL) condition that does not depend on the ABC. Moreover, the decay rate of the continuous energy can be determined: it is exponential if the computational domain is star-shaped and this property can be illustrated numerically.


Author(s):  
Yansong Ge ◽  
Xinyu Xiao ◽  
Ge Yao ◽  
Shuaishuai Yuan ◽  
Lin Zhang ◽  
...  

2019 ◽  
Vol 12 (2) ◽  
pp. 675-683 ◽  
Author(s):  
Yue Wu ◽  
Hang Yang ◽  
Yan Zou ◽  
Yingying Dong ◽  
Jianyu Yuan ◽  
...  

A dialkylthio-substituted conjugated polymer is designed and synthesized as a donor material for high-performance polymer solar cells with long-term stability.


1995 ◽  
Vol 377 ◽  
Author(s):  
Mohan K. Bhan

ABSTRACTWe have systematically investigated the effects of addition of sub-ppm levels of boron on the stability of a-Si:H films and p-i-n devices, deposited by PE-CVD technique. The films thus produced with appropriate amounts of boron, show a significant improvement in stability, when soaked under both AM 1.5 (short-term) as well as 10×sun (long-term) illumination conditions. The opto-electronic properties of the films are quite respectable It is concluded that boron compensates the native impurities by forming donor-acceptor pairs, which reduces the “fast” defects and hence the initial degradation of the films. It is also speculated that boron may also be improving the short-term stability, by reducing the recombination of light generated electrons and holes, by converting D° into D+ states. The long-term stability appears to get affected by hydrogen dilution which seems to reduce the amount of “slow” defects. As a result of B doping of i-layer, the initial conversion efficiency of the devices decreases. It is presumed that our devices may contain an enhanced level of boron impurity, than expected, making them as worse material and to degrade less.


2014 ◽  
Vol 16 (36) ◽  
pp. 19307-19313 ◽  
Author(s):  
Qing Chen ◽  
Yue Hu ◽  
Chuangang Hu ◽  
Huhu Cheng ◽  
Zhipan Zhang ◽  
...  

Graphene quantum dots boost the capacitance of the graphene supercapacitor by more than 90% and with an excellent long-term stability.


2018 ◽  
Vol 3 (3) ◽  
pp. 143-151
Author(s):  
Sophie Huvelle ◽  
Marie Godet ◽  
Laurence Galanti ◽  
Mélanie Closset ◽  
Benoît Bihin ◽  
...  

AbstractBackgroundPiperacillin-Tazobactam is frequently infused in hospitals. The use of a generic version was considered after the out of stock of the brand name Tazocin®. The stability of 4 g of Tazocin®in 120 mL of dextrose 5 % (D5) was demonstrated during 35 days at 5 °C ± 3 °C after freezing (−20 °C) and microwave thawing (FMT). The aim of the study was to investigate and compare the long-term stability of Tazocin®and a generic product in the same conditions.MethodsFive polyolefin bags of 4 g of Piperacillin/Tazobactam®Sandoz and 5 bags of 4 g of Tazocin®were prepared under aseptic conditions in 120 mL of D5 and stored 3 months at 20 °C then thawed and stored 58 days at 5 ± 3 °C.Spectrophotometric absorbance at different wavelengths, pH measurement, visual and microscopic observations were also performed.The concentrations were measured by HPLC, at 211 nm for tazobactam and 230 nm for piperacilline.ResultsNo significant change in pH values or optic densities, no crystals were detected. The lower confidence limit at 95 % of the concentration for the solutions remains superior to 90 % of the initial concentration until 58 days of storage at 5 ± 3 °C.ConclusionUnder these conditions, 4 g/120 mL of Piperacillin/Tazobactam®Sandoz or Tazocin®in D5 infusion in polyolefin bags remains stable at least for 58 days at 5 ± 3 °C after FMT


2019 ◽  
Vol 27 (e1) ◽  
pp. e74-e78
Author(s):  
Marie-Lise Colsoul ◽  
Jean-Daniel Hecq ◽  
Laura Soumoy ◽  
Océane Charles ◽  
Nicolas Goderniaux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document