vapor deposition technique
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 79)

H-INDEX

27
(FIVE YEARS 5)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Maksim N. Chagin ◽  
Veronica S. Sulyaeva ◽  
Vladimir R. Shayapov ◽  
Aleksey N. Kolodin ◽  
Maksim N. Khomyakov ◽  
...  

Amorphous hydrogenated silicon carbonitride films were synthesized on Si(100), Ge(111), and fused silica substrates using the inductively coupled plasma chemical vapor deposition technique. 1,1,3,3-tetramethyldisilazane (TMDSN) was used as a single-source precursor. The effect of the precursor’s pressure in the initial gas mixture, the substrate temperature, the plasma power, and the flow rate of nitrogen gas as an additional reagent on the film growth rate, element composition, chemical bonding, wettability of film surface, and the optical and mechanical properties of a-SiCxNy:H films was investigated. In situ diagnostic studies of the gas phase have been performed by optical emission spectroscopy during the film deposition process. The long-term stability of films was studied over a period of 375 days. Fourier-transform infrared (FTIR) and X-ray energy dispersive spectroscopy (EDX), and wettability measurements elucidated the oxidation of the SiCxNy:H films deposited using TMDSN + N2 mixture. Films obtained from a mixture with argon had high stability and maintained the stability of element composition after long-term storage in ambient air.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 388
Author(s):  
Mauricio R. Ramos ◽  
Andreo Crnjac ◽  
Donny Cosic ◽  
Milko Jakšić

Synthetic single crystal diamond grown using the chemical vapor deposition technique constitutes an extraordinary candidate material for monitoring radiation in extreme environments. However, under certain conditions, a progressive creation of space charge regions within the crystal can lead to the deterioration of charge collection efficiency. This phenomenon is called polarization and represents one of the major drawbacks associated with using this type of device. In this study, we explore different techniques to mitigate the degradation of signal due to polarization. For this purpose, two different diamond detectors are characterized by the ion beam-induced charge technique using a nuclear microprobe, which utilizes MeV energy ions of different penetration depths to probe charge transport in the detectors. The effect of polarization is analyzed by turning off the bias applied to the detector during continuous or discontinuous irradiation, and also by alternating bias polarity. In addition, the beneficial influence of temperature for reducing the effect of polarization is also observed. Finally, the effect of illuminating the detector with light is also measured. Our experimental results indicate that heating a detector or turning off the bias, and then applying it during continuous irradiation can be used as satisfactory methods for recovering the CCE value close to that of a prepolarized state. In damaged regions, illumination with white light can be used as a standard method to suppress the strength of polarization induced by holes.


2022 ◽  
Vol 13 ◽  
pp. 10-53
Author(s):  
Anastasiya Sergievskaya ◽  
Adrien Chauvin ◽  
Stephanos Konstantinidis

Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.


2021 ◽  
Vol 0 ◽  
pp. 1-7
Author(s):  
Hikmetnur Danisman ◽  
Fatih Celebi ◽  
Sengul Danisman ◽  
Ali Altug Bicakci

Objectives: The aim of this study is to apply a diamond-like carbon (DLC) coating on orthodontic brackets and to examine the effects of the coating on surface properties and friction. Materials and Methods: 0.022-inch upper right canine brackets, 0.018-inch stainless steel wires, and 0.019 × 0.025-inch stainless steel wires were used in the study. Half of the brackets were treated with physical vapor deposition technique and coated with DLC. Different binary groups constituted of coated and uncoated brackets and wires were subjected to friction experiments using the Instron universal testing machine (Instron, Norwood, MA, USA). The surface properties of the coatings were evaluated using Raman, Scanning Electron Microscopy, and non-contact optical profilometer. Results: The friction force values between the DLC-coated brackets and the stainless-steel wires in both dimensions were found to be statistically significantly lower than the friction force between the uncoated brackets and the wires (P < 0.001). The surface roughness value, especially around the slot groove decreased significantly in the coated brackets (P < 0.05). DLC coating layer thickness is approximately 1.0 μm (806 nanometers). Conclusion: DLC coating improves the surface properties of orthodontic brackets, and DLC coating process remarkably reduced the friction force.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7637
Author(s):  
Joshua Grant ◽  
Grey Abernathy ◽  
Oluwatobi Olorunsola ◽  
Solomon Ojo ◽  
Sylvester Amoah ◽  
...  

Group-IV alloy GeSn holds great promise for the high-performance optoelectronic devices that can be monolithically integrated on Si for near- and mid-infrared applications. Growth of GeSn using chemical vapor deposition technique with various Sn and Ge precursors has been investigated worldwide. To achieve relatively high Sn incorporation, the use of higher pressure and/or higher order Ge hydrides precursors were reported. In this work, we successfully demonstrated the growth of high-quality GeSn with Sn composition of 16.7% at low pressure of 12 Torr. The alloy was grown using the commercially available GeH4 and SnCl4 precursors via a chemical vapor deposition reactor. Material and optical characterizations were performed to confirm the Sn incorporation and to study the optical properties. The demonstrated growth results reveal a low-pressure growth window to achieve high-quality and high Sn alloys for future device applications.


2021 ◽  
Vol 1206 (1) ◽  
pp. 012028
Author(s):  
Sk Faruque Ahmed ◽  
Mohibul Khan ◽  
Nillohit Mukherjee

Abstract Silicon incorporated carbon nanotube (Si-CNTs) thin films was prepared by radio frequency plasma enhanced chemical vapor deposition technique. Tetraethyl orthosilicate solution was used for incorporation of silicon in CNTs thin films. Energy dispersive X-ray analysis shows that the silicon atomic percentage was varied from 0 % to 6.1 %. The chemical binding energies of carbon and silicon were analyzed from X-ray photoelectron spectroscopy data. The various peaks at ~531 eV, ~ 285 eV, ~155 eV and ~104 eV was observed in the XPS spectra due to the oxygen, carbon and silicon respectively. Surface morphologies of Si-CNTs thin films have been analyzed by field emission scanning electron microscopy, which revels that the length of the silicon incorporated carbon nanotubes ~500 nm and corresponding diameter ~80 nm. The room temperature electrical conductivity was increased whereas the activation energy was decreased with the increase of atomic percentage of silicon in Si-CNTs thin films. The room temperature electrical conductivity was increased from 4.3 × 103 to 7.1 × 104 S cm−1 as the silicon atomic percentage in Si-CNTs thin films increases from 0 to 6.1 % respectively.


Author(s):  
Ramakant Rana ◽  
◽  
Lucky Krishnia ◽  
R.S. Walia ◽  
Qasim Murtaza ◽  
...  

In this paper a self-developed polycrystalline diamond coating was done on tungsten carbide (WC) tool insets by using simple thermal chemical vapor deposition technique. The growth of these diamond films has been carried out at ~900 ºC temperature. The as-grown polycrystalline diamond films on the surface of tungsten carbide tool inserts have been characterized using Raman spectrometer and scanning electron microscope (SEM). The morphological studies reveal that the as-grown diamond films are of high crystalline quality. The as-grown diamond films possess compressive stress. The micro-hardness indentation test of the as-grown diamond films on WC tool inserts and bare have also been done and it has been found that the Vicker’s hardness of the as-grown diamond WC tool inserts is found to be 1423.32 HV which is 29% better than the un-coated tools.


Sign in / Sign up

Export Citation Format

Share Document