Development of fabrics by digital light processing three-dimensional printing technology and using a polyurethane acrylate photopolymer

2019 ◽  
Vol 90 (7-8) ◽  
pp. 847-856
Author(s):  
Seul Gi Kim ◽  
Ji Eun Song ◽  
Hye Rim Kim

This study aimed to produce fabrics by the digital light processing (DLP) three-dimensional (3D) printing technology and using a polyurethane acrylate photopolymer as the printing material. The effect of the acrylate oligomer concentration on printing was evaluated. The DLP 3D printing conditions, such as the curing time and layer thickness, were controlled considering the physical properties, such as the tensile strength, elongation, and crease recovery of the 3D printed material. The optimal printing conditions were as follows: concentration of acrylate oligomer in the photopolymer: 10% (v/v); curing time per layer: 14 s; and layer thickness: 100 µm. These results are expected to guide further studies on the development of fabrics using DLP 3D printing technology.

2020 ◽  
pp. 193864002097141
Author(s):  
Rishin J. Kadakia ◽  
Colleen M. Wixted ◽  
Cambre N. Kelly ◽  
Andrew E. Hanselman ◽  
Samuel B. Adams

Three-dimensional (3D) printing technology has advanced greatly over the past decade and is being used extensively throughout the field of medicine. Several orthopaedic surgery specialties have demonstrated that 3D printing technology can improve patient care and physician education. Foot and ankle pathology can be complex as the 3D anatomy can be challenging to appreciate. Deformity can occur in several planes simultaneously and bone defects either from previous surgery or trauma can further complicate surgical correction. Three-dimensional printing technology provides an avenue to tackle the challenges associated with complex foot and ankle pathology. A basic understanding of how these implants are designed and made is important for surgeons as this technology is becoming more widespread and the clinical applications continue to grow within foot and ankle surgery. Levels of Evidence: Level V


2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110285
Author(s):  
Kai Xiao ◽  
Bo Xu ◽  
Lin Ding ◽  
Weiguang Yu ◽  
Lei Bao ◽  
...  

Objective To assess the outcomes of traditional three-dimensional (3D) printing technology (TPT) versus mirror 3D printing technology (MTT) in treating isolated acetabular fractures (IAFs). Methods Consecutive patients with an IAF treated by either TPT or MTT at our tertiary medical centre from 2012 to 2018 were retrospectively reviewed. Follow-up was performed 1, 3, 6, and 12 months postoperatively and annually thereafter. The primary outcome was the Harris hip score (HHS), and the secondary outcomes were major intraoperative variables and key orthopaedic complications. Results One hundred fourteen eligible patients (114 hips) with an IAF (TPT, n = 56; MTT, n = 58) were evaluated. The median follow-up was 25 months (range, 21–28 months). At the last follow-up, the mean HHS was 82.46 ±14.70 for TPT and 86.30 ± 13.26 for MTT with a statistically significant difference. Significant differences were also detected in the major intraoperative variables (operation time, intraoperative blood loss, number of fluoroscopic screenings, and anatomical reduction number) and the major orthopaedic complications (loosening, implant failure, and heterotopic ossification). Conclusion Compared with TPT, MTT tends to produce accurate IAF reduction and may result in better intraoperative variables and a lower rate of major orthopaedic complications.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Marcin Metlerski ◽  
Katarzyna Grocholewicz ◽  
Aleksandra Jaroń ◽  
Mariusz Lipski ◽  
Grzegorz Trybek ◽  
...  

Three-dimensional printing is a rapidly developing area of technology and manufacturing in the field of oral surgery. The aim of this study was comparison of presurgical models made by two different types of three-dimensional (3D) printing technology. Digital reference models were printed 10 times using fused deposition modelling (FDM) and digital light processing (DLP) techniques. All 3D printed models were scanned using a technical scanner. The trueness, linear measurements, and printing time were evaluated. The diagnostic models were compared with the reference models using linear and mean deviation for trueness measurements with computer software. Paired t-tests were performed to compare the two types of 3D printing technology. A P value < 0.05 was considered statistically significant. For FDM printing, all average distances between the reference points were smaller than the corresponding distances measured on the reference model. For the DLP models, the average distances in the three measurements were smaller than the original. Only one average distance measurement was greater. The mean deviation for trueness was 0.1775 mm for the FDM group and 0.0861 mm for the DLP group. Mean printing time for a single model was 517.6 minutes in FDM technology and 285.3 minutes in DLP. This study confirms that presurgical models manufactured with FDM and DLP technologies are usable in oral surgery. Our findings will facilitate clinical decision-making regarding the best 3D printing technology to use when planning a surgical procedure.


2017 ◽  
Vol 10 (2) ◽  
pp. 089-098 ◽  
Author(s):  
Mariana Matias ◽  
Horácio Zenha ◽  
Horácio Costa

Craniomaxillofacial reconstructive surgery is a challenging field. First it aims to restore primary functions and second to preserve craniofacial anatomical features like symmetry and harmony. Three-dimensional (3D) printed biomodels have been widely adopted in medical fields by providing tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. Craniomaxillofacial reconstructive surgery was one of the first areas to implement 3D printing technology in their practice. Biomodeling has been used in craniofacial reconstruction of traumatic injuries, congenital disorders, tumor removal, iatrogenic injuries (e.g., decompressive craniectomies), orthognathic surgery, and implantology. 3D printing has proven to improve and enable an optimization of preoperative planning, develop intraoperative guidance tools, reduce operative time, and significantly improve the biofunctional and the aesthetic outcome. This technology has also shown great potential in enriching the teaching of medical students and surgical residents. The aim of this review is to present the current status of 3D printing technology and its practical and innovative applications, specifically in craniomaxillofacial reconstructive surgery, illustrated with two clinical cases where the 3D printing technology was successfully used.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoming Li ◽  
Rongrong Cui ◽  
Lianwen Sun ◽  
Katerina E. Aifantis ◽  
Yubo Fan ◽  
...  

3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.


2022 ◽  
Vol 14 (1) ◽  
pp. 32-39
Author(s):  
Sachit Anand ◽  
Nellai Krishnan ◽  
Prabudh Goel ◽  
Anjan Kumar Dhua ◽  
Vishesh Jain ◽  
...  

Background: In cases with solid tumors, preoperative radiological investigations provide valuable information on the anatomy of the tumor and the adjoining structures, thus helping in operative planning. However, due to a two-dimensional view in these investigations, a detailed spatial relationship is difficult to decipher. In contrast, three-dimensional (3D) printing technology provides a precise topographic view to perform safe surgical resections of these tumors. This systematic review aimed to summarize and analyze current evidence on the utility of 3D printing in pediatric extra-cranial solid tumors. Methods: The present study was registered on PROSPERO—international prospective register of systematic reviews (registration number: CRD42020206022). PubMed, Embase, SCOPUS, and Google Scholar databases were explored with appropriate search criteria to select the relevant studies. Data were extracted to study the bibliographic information of each article, the number of patients in each study, age of the patient(s), type of tumor, organ of involvement, application of 3D printing (surgical planning, training, and/or parental education). The details of 3D printing, such as type of imaging used, software details, printing technique, printing material, and cost were also synthesized. Results: Eight studies were finally included in the systematic review. Three-dimensional printing technology was used in thirty children with Wilms tumor (n = 13), neuroblastoma (n = 7), hepatic tumors (n = 8), retroperitoneal tumor (n = 1), and synovial sarcoma (n = 1). Among the included studies, the technology was utilized for preoperative surgical planning (five studies), improved understanding of the surgical anatomy of solid organs (two studies), and improving the parental understanding of the tumor and its management (one study). Computed tomography and magnetic resonance imaging were either performed alone or in combination for radiological evaluation in these children. Different types of printers and printing materials were used in the included studies. The cost of the 3D printed models and time involved (range 10 h to 4–5 days) were reported by two studies each. Conclusions: 3D printed models can be of great assistance to pediatric surgeons in understanding the spatial relationships of tumors with the adjacent anatomic structures. They also facilitate the understanding of families, improving doctor–patient communication.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 180
Author(s):  
M. N. M. Azlin ◽  
R. A. Ilyas ◽  
M. Y. M. Zuhri ◽  
S. M. Sapuan ◽  
M. M. Harussani ◽  
...  

Sustainable technologies are vital due to the efforts of researchers and investors who have allocated significant amounts of money and time to their development. Nowadays, 3D printing has been accepted by the main industry players, since its first establishment almost 30 years ago. It is obvious that almost every industry is related to technology, which proves that technology has a bright future. Many studies have shown that technologies have changed the methods for developing particular products. Three-dimensional printing has evolved tremendously, and currently, many new types of 3D printing machines have been introduced. In this paper, we describe the historical development of 3D printing technology including its process, types of printing, and applications on polymer materials.


2017 ◽  
Vol 23 (3) ◽  
pp. 465-473 ◽  
Author(s):  
Qing Han ◽  
Yanguo Qin ◽  
Yun Zou ◽  
Chenyu Wang ◽  
Haotian Bai ◽  
...  

Purpose Although proximal row carpectomy, wrist arthrodesis and even total wrist arthroplasty were developed to treat wrist disease using bone and cartilage of the wrist, severe and complicated bone defects caused by ferocious trauma and bone tumors remain a stubborn problem for surgeons. Development and application of the three-dimensional (3D) printing technology may provide possible solutions. Design/methodology/approach Computed tomography (CT) data of three cases with severe bone defects caused by either trauma or bone tumor were collected and converted into three-dimensional models. Prostheses were designed individually according to the residual anatomical structure of the wrist based on the models. Both the models and prostheses were produced using 3D printing technology. A preoperative design was prepared according to the models and prostheses. Then arthroplasty was performed after preoperative simulation with printed models and prostheses. Findings The diameter of the stem and radial medullary cavity, the direction and location of the prosthesis, and other components were checked during the preoperative design and simulation process phases. The three cases with 3D printed wrist all regained reconstruction of normal anatomy and part of the function after surgery. The average increasing Cooney score rate of Cases 2 and 3 was 133.34 ± 23.57 per cent, and that of Case 1 reached 85 per cent. The average declining rate of the Gartland and Werley Score in Cases 2 and 3 was 65.21 ± 18.89 per cent, and that of Case 1 dropped to 5 per cent in the last follow-up. The scores indicated that patients experienced pain relief and function regain. In addition, the degree of patient satisfaction improved. Originality/value 3D printed wrist arthroplasty may provide an effective method for severe and complicated cases without sacrificing other bones. Personal customization can offer better anatomy and function than arthrodesis or other traditional surgical techniques.


2019 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Jiumeng Zhang ◽  
Qipeng Hu ◽  
Shuai Wang ◽  
Jie Tao ◽  
Maling Gou

An additive manufacturing technology based on projection light, digital light processing (DLP) 3D printing, has been widely applied in the field of medical products production and development. The precision projection light, reflected by a million pixels instead of a focused point, provides this technology both printing accuracy and printing speed. In particular, this printing technology provides a relatively milder condition to cells due to its non-direct contact. This review introduces the DLP-based 3D printing technology and its applications in medicine, including precise medical devices, functionalized artificial tissues and specific drug delivery systems. The products are particularly discussed for their significance for medicine. We believe that this technology provides a potential tool for biological research and clinical medicine, while challenges of scale-up and regulatory approval are also discussed.


Sign in / Sign up

Export Citation Format

Share Document