From fabric to smart T-shirt: fine tuning an improved robust system to detect arrhythmia

2021 ◽  
pp. 004051752110608
Author(s):  
Abdel Salam Malek ◽  
Ashraf Elnahrawy ◽  
Hamed Anwar ◽  
Mohamed Naeem

Wearable electrocardiogram (ECG) systems should be comfortable, non-stigmatizing, and capable of producing high-quality data. Many different designs of wearable textile ECG systems have recently emerged. Some of them are not considered to be smart garments, whereas most of the others present only the electronic side of the system. Our research work introduces a comprehensive study for an improved single-lead ECG smart shirt to identify automatically premature ventricular contraction as a common form of arrhythmia. For artifact-free results, Marvelous Designer is implemented to design our optimized relaxed slim fit shirt. In addition, a weft-knitted fabric of 80% nylon–20% spandex is used to manufacture the outer part of the shirt. Moreover, lightweight and small size electronic components are integrated to the outer part via low-resistance dry textile electrodes and 100% cotton fabric as an inner layer for easy transmission of weak ECG signals.

2014 ◽  
Vol 14 (04) ◽  
pp. 1450055 ◽  
Author(s):  
IBTICEME SEDJELMACI ◽  
F. BEREKSI-REGUIG

In this paper, the analysis of the electrocardiogram (ECG) signal is carried out according a non-linear approach. This concerns the eventual fractal behavior of such signal and the correlation of such behavior with normal and pathological ECG signals. The analysis is carried out on different ECG signals taken from the MIT-BIH arrhythmia database. In fact these signals are those of six subjects with different ages and presenting both normal and abnormal arrhythmias situations. The abnormal situations are atrial premature beat (APB), premature ventricular contraction (PVC), right bundle branch block (RBBB) and left bundle branch block (LBBB). The fractal behavior of these signals is analyzed according to the determination of the multifractal spectrum and the fractal dimension variations and looking for eventually a fractal signature of each heart disease and age of the subject. The obtained results show a fractal signature according to the age and the pathologies for the studied cases. However further investigations are required on larger databases to confirm such results.


2020 ◽  
Vol 12 (10) ◽  
pp. 1685 ◽  
Author(s):  
Amin Ullah ◽  
Syed Muhammad Anwar ◽  
Muhammad Bilal ◽  
Raja Majid Mehmood

The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart’s rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients’ acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 951 ◽  
Author(s):  
Roberta Avanzato ◽  
Francesco Beritelli

Cardiovascular disease (CVD) is the most common class of chronic and life-threatening diseases and, therefore, considered to be one of the main causes of mortality. The proposed new neural architecture based on the recent popularity of convolutional neural networks (CNN) was a solution for the development of automatic heart disease diagnosis systems using electrocardiogram (ECG) signals. More specifically, ECG signals were passed directly to a properly trained CNN network. The database consisted of more than 4000 ECG signal instances extracted from outpatient ECG examinations obtained from 47 subjects: 25 males and 22 females. The confusion matrix derived from the testing dataset indicated 99% accuracy for the “normal” class. For the “atrial premature beat” class, ECG segments were correctly classified 100% of the time. Finally, for the “premature ventricular contraction” class, ECG segments were correctly classified 96% of the time. In total, there was an average classification accuracy of 98.33%. The sensitivity (SNS) and the specificity (SPC) were, respectively, 98.33% and 98.35%. The new approach based on deep learning and, in particular, on a CNN network guaranteed excellent performance in automatic recognition and, therefore, prevention of cardiovascular diseases.


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Asma Haque ◽  
Abdur Rahman

Electrocardiogram (ECG) signal exhibits important distinctive feature for different cardiac issues. Automatic classification of electrocardiogram (ECG) signal can be used for primary detection of various heart conditions. Information about heart and ischemic changes of heart may be obtained from cleaned ECG signals. ECG signal has an important role in monitoring and diacritic of the heart patients. An accurate ECG classification is challenging problem. The accuracy often depends on proper selection of observing parameters as well as detection algorithms. Heart disorder means abnormal rhythm or abnormalities present in the heart. In this research work, we have developed a decision tree based algorithm to classify heart problems by utilizing the statistical signal characteristic (SSC) of an ECG signal. The proposed model has been tested with real ECG signal to successfully (60-98%) detect normal, apnea and ventricular tachyarrhythmia condition.


Author(s):  
Khudhur A. Alfarhan ◽  
Mohd Yusoff Mashor ◽  
Abdul Rahman Mohd Saad ◽  
Hayder A. Azeez ◽  
Mustafa M. Sabry

Arrhythmia, a common form of heart disease, can be detected from an electrocardiogram (ECG) signal. This research work presents a comparative study between five feature extraction methods applied separately on two window sizes for detecting three ECG pulse types, namely normal and two arrhythmia variations. The library support vector machine (LIBSVM) was used to classify the three classes of the ECG pulses. The ECG signals were obtained from MIT-BIH database. The ECG dataset was normalized and filtered to remove any noise and after that the signals were windowed into two window sizes (long window and short window). Five approaches were used to extract the features from the ECG signals. These approaches are scalar Autoregressive model coefficients, Haar discrete wavelet transform (DWT), Daubechies (db) DWT, Biorthogonal (bior) DWT, and principal components analysis (PCA). Each approach was applied separately on the two window sizes. The results of the classification show that scalar Autoregressive model coefficients, Haar, db, and bior are better approaches to catch the ECG features for short window than the long window. However, PCA gave the closest and highest results for the two window sizes than other approaches. That mean the PCA is the better feature extraction approach for both window sizes.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


Author(s):  
Mary Kay Gugerty ◽  
Dean Karlan

Without high-quality data, even the best-designed monitoring and evaluation systems will collapse. Chapter 7 introduces some the basics of collecting high-quality data and discusses how to address challenges that frequently arise. High-quality data must be clearly defined and have an indicator that validly and reliably measures the intended concept. The chapter then explains how to avoid common biases and measurement errors like anchoring, social desirability bias, the experimenter demand effect, unclear wording, long recall periods, and translation context. It then guides organizations on how to find indicators, test data collection instruments, manage surveys, and train staff appropriately for data collection and entry.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elisa Mejía-Mejía ◽  
James M. May ◽  
Mohamed Elgendi ◽  
Panayiotis A. Kyriacou

AbstractHeart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors, including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain, frequency-domain, and nonlinear indices were obtained from these signals. Bland–Altman analysis, correlation analysis, and Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP states using Kruskal–Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to be more sensitive to these changes.


2021 ◽  
Vol 13 (7) ◽  
pp. 1387
Author(s):  
Chao Li ◽  
Jinhai Zhang

The high-frequency channel of lunar penetrating radar (LPR) onboard Yutu-2 rover successfully collected high quality data on the far side of the Moon, which provide a chance for us to detect the shallow subsurface structures and thickness of lunar regolith. However, traditional methods cannot obtain reliable dielectric permittivity model, especially in the presence of high mix between diffractions and reflections, which is essential for understanding and interpreting the composition of lunar subsurface materials. In this paper, we introduce an effective method to construct a reliable velocity model by separating diffractions from reflections and perform focusing analysis using separated diffractions. We first used the plane-wave destruction method to extract weak-energy diffractions interfered by strong reflections, and the LPR data are separated into two parts: diffractions and reflections. Then, we construct a macro-velocity model of lunar subsurface by focusing analysis on separated diffractions. Both the synthetic ground penetrating radar (GPR) and LPR data shows that the migration results of separated reflections have much clearer subsurface structures, compared with the migration results of un-separated data. Our results produce accurate velocity estimation, which is vital for high-precision migration; additionally, the accurate velocity estimation directly provides solid constraints on the dielectric permittivity at different depth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanfei Yang ◽  
Mingzhu Xu ◽  
Aimin Liang ◽  
Yan Yin ◽  
Xin Ma ◽  
...  

AbstractIn this study, a wearable multichannel human magnetocardiogram (MCG) system based on a spin exchange relaxation-free regime (SERF) magnetometer array is developed. The MCG system consists of a magnetically shielded device, a wearable SERF magnetometer array, and a computer for data acquisition and processing. Multichannel MCG signals from a healthy human are successfully recorded simultaneously. Independent component analysis (ICA) and empirical mode decomposition (EMD) are used to denoise MCG data. MCG imaging is realized to visualize the magnetic and current distribution around the heart. The validity of the MCG signals detected by the system is verified by electrocardiogram (ECG) signals obtained at the same position, and similar features and intervals of cardiac signal waveform appear on both MCG and ECG. Experiments show that our wearable MCG system is reliable for detecting MCG signals and can provide cardiac electromagnetic activity imaging.


Sign in / Sign up

Export Citation Format

Share Document