Measuring the Elastic Modulus of Small Tissue Samples

1998 ◽  
Vol 20 (1) ◽  
pp. 17-28 ◽  
Author(s):  
R.Q. Erkamp ◽  
P. Wiggins ◽  
A.R. Skovoroda ◽  
S.Y. Emelianov ◽  
M. O'Donnell

Independent measurements of the elastic modulus (Young's modulus) of tissue are a necessary step in turning elasticity imaging into a clinical tool. A system capable of measuring the elastic modulus of small tissue samples was developed. The system tolerates the constraints of biological tissue, such as limited sample size (≤1.5 cm3) and imperfections in sample geometry. A known deformation is applied to the tissue sample while simultaneously measuring the resulting force. These measurements are then converted to an elastic modulus, where the conversion uses prior calibration of the system with plastisol samples of known Young's modulus. Accurate measurements have been obtained from 10 to 80 kPa, covering a wide range of tissue modulus values. In addition, the performance of the system was further investigated using finite element analysis. Finally, preliminary elasticity measurements on canine kidney samples are presented and discussed.

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 823
Author(s):  
Alexander M. Grishin

We report optical and mechanical properties of hard aluminum magnesium boride films magnetron sputtered from a stoichiometric AlMgB14 ceramic target onto Corning® 1737 Glass and Si (100) wafers. High target sputtering rf-power and sufficiently short target-to-substrate distance appeared to be critical processing conditions. Amorphous AlMgB14 films demonstrate very strong indentation size effect (ISE): exceptionally high nanohardness H = 88 GPa and elastic Young’s modulus E* = 517 GPa at 26 nm of the diamond probe penetration depth and almost constant values, respectively, of about 35 GPa and 275 GPa starting at depths of about 2–3% of films’ thickness. For comparative analysis of elastic strain to failure index  H/E*, resistance to plastic deformation ratio H3/E*2 and elastic recovery ratio We were obtained in nanoindentation tests performed in a wide range of loading forces from 0.5 to 40 mN. High authentic numerical values of H = 50 GPa and E* = 340 GPa correlate with as low as only 10% of total energy dissipating through the plastic deformations.


2021 ◽  
Vol 1157 (1) ◽  
pp. 012031
Author(s):  
L. Wagner ◽  
M. Wallner ◽  
P. Larour ◽  
K. Steineder ◽  
R. Schneider

Author(s):  
Jonathan B. Hopkins ◽  
Lucas A. Shaw ◽  
Todd H. Weisgraber ◽  
George R. Farquar ◽  
Christopher D. Harvey ◽  
...  

The aim of this paper is to introduce an approach for optimally organizing a variety of different unit cell designs within a large lattice such that the bulk behavior of the lattice exhibits a desired Young’s modulus with a graded change in thermal expansion over its geometry. This lattice, called a graded microarchitectured material, can be sandwiched between two other materials with different thermal expansion coefficients to accommodate their different expansions or contractions caused by changing temperature while achieving a desired uniform stiffness. First, this paper provides the theory necessary to calculate the thermal expansion and Young’s modulus of large multi-material lattices that consist of periodic (i.e., repeating) unit cells of the same design. Then it introduces the theory for calculating the graded thermal expansions of a large multimaterial lattice that consists of non-periodic unit cells of different designs. An approach is then provided for optimally designing and organizing different unit cells within a lattice such that both of its ends achieve the same thermal expansion as the two materials between which the lattice is sandwiched. A MATLAB tool is used to generate images of the undeformed and deformed lattices to verify their behavior and various examples are provided as case studies. The theory provided is also verified and validated using finite element analysis and experimentation.


Author(s):  
Alexander E. Stott ◽  
Constantinos Charalambous ◽  
Tristram J. Warren ◽  
William T. Pike ◽  
Robert Myhill ◽  
...  

ABSTRACT The National Aeronautics and Space Administration InSight mission has deployed the seismic experiment, SEIS, on the surface of Mars, and has recorded a variety of signals including marsquakes and dust devils. This work presents results on the tilt and local noise sources, which provide context to aid interpretation of the observed signals and allow an examination of the near-surface properties. Our analysis uses data recorded by the short-period sensors on the deck, throughout deployment and in the final configuration. We use thermal decorrelation to provide an estimate of the sol-to-sol tilt. This tilt is examined across deployment and over a Martian year. After each modification to the site, the tilt is seen to stabilize over 3–20 sols depending on the action, and the total change in tilt is <0.035°. Long-term tilt over a Martian year is limited to <0.007°. We also investigate the attenuation of lander-induced vibrations between the lander and SEIS. Robotic arm motions provide a known lander source in the 5–9 Hz bandwidth, yielding an amplitude attenuation of lander signals between 100 and 1000 times. The attenuation of wind sensitivity from the deck to ground presents a similar value in the 1.5–9 Hz range, thus favoring a noise dominated by lander vibrations induced by the wind. Wind sensitivities outside this bandwidth exhibit different sensitivity changes, indicating a change in the coupling. The results are interpreted through a finite-element analysis of the regolith with a depth-dependent Young’s modulus. We argue that discrepancies between this model and the observations are due to local compaction beneath the lander legs and/or anelasticity. An estimate for the effective Young’s modulus is obtained as 62–81 MPa, corroborating previous estimates for the top layer duricrust.


2005 ◽  
Vol 54 (10) ◽  
pp. 1016-1021 ◽  
Author(s):  
Kazuto TANAKA ◽  
Kohji MINOSHIMA ◽  
Takehiro IMOTO

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Chunlai Tian ◽  
Pengfei Duan

Composite has been widely used in various fields due to its advanced performance. To reveal the relation between the mechanical properties of the composite and that of each individual component, finite element analysis (FEA) has usually been adopted. In this study, in order to predict the mechanical properties of hard coating on a soft polymer, the response of this coating system during nanoindentation was modelled. Various models, such as a viscoelastic model and fitting model, were adopted to analyse the indentation response of this coating system. By varying the substrate properties (i.e., Young’s modulus, viscoelasticity, and Poisson’s ratio), Young’s modulus, energy loss, and the viscoelastic model of the coating system were analysed, and how the mechanical properties of the substrate will affect the indentation response of the coating system was discussed.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4523 ◽  
Author(s):  
Jian Du ◽  
Li Wang ◽  
Yanbin Shi ◽  
Feng Zhang ◽  
Shiheng Hu ◽  
...  

The CNT-PDMS composite has been widely adopted in flexible devices due to its high elasticity, piezoresistivity, and biocompatibility. In a wide range of applications, CNT-PDMS composite sensors were used for resistive strain measurement. Accordingly, the percolation threshold 2%~4% of the CNT weight ratio in the CNT-PDMS composite was commonly selected, which is expected to achieve the optimized piezoresistive sensitivity. However, the linear range around the percolation threshold weight ratio (2%~4%) limits its application in a stable output of large strain (>20%). Therefore, comprehensive understanding of the electromechanical, mechanical, and electrical properties for the CNT-PDMS composite with different CNT weight ratios was expected. In this paper, a systematic study was conducted on the piezoresistivity, Young’s modulus, conductivity, impedance, and the cross-section morphology of different CNT weight ratios (1 to 10 wt%) of the CNT-PDMS composite material. It was experimentally observed that the piezo-resistive sensitivity of CNT-PDMS negatively correlated with the increase in the CNT weight ratio. However, the electrical conductivity, Young’s modulus, tensile strength, and the linear range of piezoresistive response of the CNT-PDMS composite positively correlated with the increase in CNT weight ratio. Furthermore, the mechanism of these phenomena was analyzed through the cross-section morphology of the CNT-PDMS composite material by using SEM imaging. From this analysis, a guideline was proposed for large strain (40%) measurement applications (e.g., motion monitoring of the human body of the finger, arm, foot, etc.), the CNT weight ratio 8 wt% was suggested to achieve the best piezoresistive sensitivity in the linear range.


2020 ◽  
Vol 40 (2) ◽  
pp. 152-157 ◽  
Author(s):  
Pınar Terzioglu ◽  
Yasin Altin ◽  
Ayse Kalemtas ◽  
Ayse Celik Bedeloglu

AbstractRecently, due to sustainable development and environmental protection policies, there is increasing interest in the development of new biodegradable polymer-based multifunctional composites. Chitosan is one of the most remarkable and preferred biopolymers, which is environmentally friendly as well as renewable, biocompatible, and inexpensive. Though it has a wide range of potential applications, the major limitation of chitosan – the problem of poor mechanical performance – needs to be solved. In this work, graphene oxide was first produced and then used to manufacture a chitosan/graphene oxide/zinc oxide composite film through a casting method. The properties of the chitosan film and the chitosan/graphene oxide/zinc oxide composite film were investigated using Fourier transform infrared spectroscopy, mechanical, thermal gravimetric, and ultraviolet (UV)-visible spectroscopy analyses. The results showed that the incorporation of graphene oxide and zinc oxide into the chitosan matrix resulted in enhanced mechanical properties and thermal stability of chitosan biocomposite films. The graphene oxide- and zinc oxide-reinforced chitosan film showed 2527 MPa and 55.72 MPa of Young’s modulus and tensile strength, respectively, while neat chitosan showed only 1549 MPa and 37.91 MPa of Young’s modulus and tensile strength, respectively. Conversely, the addition of graphene oxide decreased the transmittance, notably in the UV region.


SPE Journal ◽  
2017 ◽  
Vol 22 (06) ◽  
pp. 1893-1914 ◽  
Author(s):  
Weiwei Wu ◽  
Mukul M. Sharma

Summary Fluid flow in unpropped and natural fractures is critical in many geophysical processes and engineering applications. The flow conductivity in these fractures depends on their closure under stress, which is a complicated mechanical process that is challenging to model. The challenges come from the deformation interaction and the close coupling among the fracture geometry, pressure, and deformation, making the closure computationally expensive to describe. Hence, most of the previous models either use a small grid system or disregard deformation interaction or plastic deformation. In this study, a numerical model is developed to simulate the stress-driven closure and the conductivity for fractures with rough surfaces. The model integrates elastoplastic deformation and deformation interaction, and can handle contact between heterogeneous surfaces. Computation is optimized and accelerated by use of an algorithm that combines the conjugate-gradient (CG) method and the fast-Fourier-transform (FFT) technique. Computation time is significantly reduced compared with traditional methods. For example, a speedup of five orders of magnitude is obtained for a grid size of 512 × 512. The model is validated against analytical problems and experiments, for both elastic-only and elastoplastic scenarios. It is shown that interaction between asperities and plastic deformation cannot be ignored when modeling fracture closure. By applying our model, roughness and yield stress are found to have a larger effect on fracture closure and compliance than Young's modulus. Plastic deformation is a dominant contributor to closure and can make up more than 70% of the total closure in some shales. The plastic deformation also significantly alters the relationship between fracture stiffness and conductivity. Surfaces with reduced correlation length produce greater conductivity because of their larger apertures, despite more fracture closure. They have a similar fraction of area in contact as compared with surfaces with longer fracture length, but the pattern of area in contact is more scattered. Contact between heterogeneous surfaces with more soft minerals leads to increased plastic deformation and fracture closure, and results in lower fracture conductivity. Fracture compliance appears not to be as sensitive to the distribution pattern of hard and soft minerals. Our model compares well with experimental data for fracture closure, and can be applied to unpropped or natural fractures. These results are obtained for a wide range of conditions: surface profile following Gaussian distribution with correlation length of 50 µm and roughness of 4 to 50 µm, yield stress of 100 to 1500 MPa, and Young's modulus of 20 to 60 GPa. The results may be different for situations outside this range of parameters.


Author(s):  
Kristopher Jones ◽  
Brian D. Jensen ◽  
Anton Bowden

This paper explores and demonstrates the potential of using pyrolytic carbon as a material for coronary stents. Stents are commonly fabricated from metal, which has worse biocompatibilty than many polymers and ceramics. Pyrolytic carbon, a ceramic, is currently used in medical implant devices due to its preferable biocompatibility properties. Micropatterned pyrolytic carbon implants can be created by growing carbon nanotubes (CNTs), and then filling the space between with amorphous carbon via chemical vapor deposition (CVD). We prepared multiple samples of two different stent-like flexible mesh designs and smaller cubic structures out of carbon-infiltrated carbon nanotubes (CI-CNT). Tension loads were applied to expand the mesh samples and we recorded the forces at brittle failure. The cubic structures were used for separate compression tests. These data were then used in conjunction with a nonlinear finite element analysis (FEA) model of the stent geometry to determine Young's modulus and maximum fracture strain in tension and compression for each sample. Additionally, images were recorded of the mesh samples before, during, and at failure. These images were used to measure an overall percent elongation for each sample. The highest fracture strain observed was 1.4% and Young's modulus values confirmed that the material was similar to that used in previous carbon-infiltrated carbon nanotube work. The average percent elongation was 86% with a maximum of 145%. This exceeds a typical target of 66%. The material properties found from compression testing show less stiffness than the mesh samples; however, specimen evaluation reveals poorly infiltrated samples.


Sign in / Sign up

Export Citation Format

Share Document