Factors associated with errors in the heparin dose response test: recommendations to improve individualized heparin management in cardiopulmonary bypass

Perfusion ◽  
2020 ◽  
pp. 026765912095297
Author(s):  
Min-Ho Lee ◽  
William Riley

Background: A critical aspect of cardiopulmonary bypass (CPB) is to achieve full anticoagulation to prevent thrombosis and consumptive coagulation without using excessive amount of heparin. This can be achieved with heparin dose response (HDR) test in vitro to calculate an individualized heparin bolus to reach a target activated clotting time (ACT) and heparin concentration. However, we often observe that the measured ACT (mACT) with the calculated heparin bolus gives significant errors, both positive (mACT is higher than expected) and negative (mACT is lower), from expected ACT (eACT). Methods: We performed a retrospective study of 250 patients who underwent cardiac surgery to attain an error distribution of the mACT from eACT with calculated heparin bolus. In addition, it is aimed to identify possible patterns of baseline ACT (bACT), calculated heparin concentration (CHC) and HDR slope that are associated with the significant positive and negative errors. Results: We found that individualized heparin bolus by HDR test is consistently underestimated while it gave a significant number of positive and negative errors. Further analysis indicates that significant negative errors correlate with high bACT and slope and low CHC while significant positive errors with low bACT and slope and high CHC. Conclusion: The mACT can be substantially different from eACT. The accuracy of the HDR test appears to be dependent upon bACT, slope, and CHC. Based on our analysis, we provide several recommendations and a flow chart to improve the quality of individualized heparin management on CPB.

2016 ◽  
Vol 30 (6) ◽  
pp. 923-928 ◽  
Author(s):  
Junko Ichikawa ◽  
Satoshi Hagihira ◽  
Testu Mori ◽  
Mitsuharu Kodaka ◽  
Keiko Nishiyama ◽  
...  

Perfusion ◽  
1996 ◽  
Vol 11 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Ian J Reece ◽  
Gerrard Linley ◽  
Habib Al Tareif ◽  
Rollie DeVroege ◽  
Jitesh Tolia ◽  
...  

Perfusion ◽  
2020 ◽  
pp. 026765912094843
Author(s):  
Kazuhiro Shirozu ◽  
Yuji Karashima ◽  
Ken Yamaura

Introduction: Supplementation of fresh frozen plasma immediately after cardiopulmonary bypass is an effective method to enhance clotting ability as coagulation factors are consumed in the extracorporeal circuit during cardiopulmonary bypass. On the other hand, the anticoagulation factors in fresh frozen plasma can also deter the clotting ability. This study investigated the effect of fresh frozen plasma administration on the comprehensive clotting ability following cardiopulmonary bypass. Methods: This prospective observational study included 22 patients scheduled for cardiac surgery. Clotting times and maximum clot firmness were evaluated using the types of rotational thromboelastometry, intrinsic rotational thromboelastometry, and heparinase thromboelastography preoperatively, immediately after cardiopulmonary bypass, and 1 hour after cardiopulmonary bypass. Activated clotting time, antithrombin activity, and heparin concentration were also measured at these time-points. Results: Antithrombin activity (62.9 ± 7.2% vs. 51.1 ± 7.4%, p < 0.0001) and activated clotting time (132.6 ± 9.6% vs. 120.0 ± 9.0%, p < 0.001) were significantly higher 1 hour after cardiopulmonary bypass compared to measurements taken immediately after cardiopulmonary bypass. Heparin concentration 1 hour after cardiopulmonary bypass was significantly decreased compared to that immediately after cardiopulmonary bypass. On the other hand, maximum clot firmness determined via intrinsic rotational thromboelastometry was significantly greater 1 hour after cardiopulmonary bypass (53.8 ± 4.8 mm) than that immediately after cardiopulmonary bypass (49.5 ± 4.8 mm). Clotting time determined via intrinsic rotational thromboelastometry and heparinase thromboelastography was also significantly shorter 1 hour after cardiopulmonary bypass than that immediately after cardiopulmonary bypass. Conclusion: Fresh frozen plasma administration increased antithrombin activity and caused activated clotting time prolongation, but then increased clotting ability. Thus, testing by rotational thromboelastometry after cardiopulmonary bypass could be valuable in the detection of comprehensive clotting ability.


2000 ◽  
Vol 92 (6) ◽  
pp. 1594-1602 ◽  
Author(s):  
Fritz Mertzlufft ◽  
Andreas Koster ◽  
Roland Hansen ◽  
Anne Risch ◽  
Herrmann Kuppe ◽  
...  

Background The authors assessed the heparin management test in vitro in volunteers and in vivo during cardiopulmonary bypass. Methods In vitro, the heparin management test was analyzed for heparin levels between 0 and 6 IU/ml using variations in hematocrit, platelets, procoagulants, and storage time. The in vivostudies consisted of two groups: In group I (cardiopulmonary bypass &lt;/= 90 min, n = 40), anticoagulation was performed according to the activated clotting time (with or without aprotinin); in group II (cardiopulmonary bypass &gt;/= 180 min, with aprotinin) included use (n = 10) and nonuse of coumadin (n = 10) and anticoagulation according to the automated heparin dose-response assay. Tests were performed in duplicate (whole blood, two heparin management test analyzers) and compared with anti-Xa activity (plasma). Results In vitro, the results of the heparin management test (n = 1,070) correlated well with heparin concentration (r2 = 0.98). Dilution and storage time did not affect the heparin management test; a hematocrit of 60% and reduced procoagulants (10%) prolonged clotting time. In vivo, the correlation (heparin management test vs. anti-Xa) was strong in group I (r2 = 0.97 [with aprotinin] and 0.96 [without aprotinin]; n = 960) and group II without coumadin (r2 = 0.89, n = 516). In group II with coumadin, the overall correlation was r2 = 0.87 and 0.79 (n = 484), although the range varied widely (0.57-0.94, between-analyzer differences 0-47%). Conclusions The results of the heparin management test were influenced by hematocrit, plasma coagulation factors, and the heparin level, but not by use of aprotinin. The heparin management test provided reliable values in vitro in group I, and in group II without coumadin but was less reliable in group II with coumadin.


2021 ◽  
Vol 17 (1) ◽  
pp. 34-39
Author(s):  
Musfireh Siddiqeh ◽  
Wajahat Javed Mirza ◽  
Javed Iqbal ◽  
Imran Khan ◽  
Ali R Mangi

Objective: A weight-based dose of heparin is calculated to achieve target ACT (Activated clotting time) for establishing CPB (cardiopulmonary bypass). Whether a target ACT can be achieved with lower dose of heparin in Pakistani population was the aim of this study. Methodology: The cross-sectional comparative study was conducted at Rawalpindi Institute of Cardiology, Department of Cardiac Surgery from 1st January 2019 to 1st January 2020. Three hundred thirty-six (336) patients undergoing elective open-heart surgeries on CPB were included in this study. Patients receiving weight-based heparin dose were placed in Group-A, while those on low-dose heparin were placed in Group-B. ACT was considered to have reached the target value in range of 400-480 seconds, values between 481-1500 seconds were considered excessive, whereas ACT of >1500 was regarded as potentially high-risk for peri-operative bleeding . Results: 14.1% (n= 28) of Group-A patients achieved target ACT, whereas 58.3% (n=116) exceeded the target of 480. In 25.1% (n=50), ACT values were beyond the measuring capacity of the assay machine i.e. >1500. Only 2.5% (n=5) required additional dosage of heparin. Target ACT in Group B was achieved in 19.7% (n= 27), 55.5% (n=76) had excessive ACT values, whereas in 16.8% (n= 23), it was >1500. 9.5% (n=13) required an additional dosage of Heparin. Conclusion: In Pakistani population, a target ACT can be achieved with significantly lower dose than the conventional weight-based heparin dose. Larger studies, preferably randomized controlled trials are needed to determine the optimal heparin dose calculation for safe anti-coagulation during CPB.


2002 ◽  
Vol 97 (4) ◽  
pp. 837-841 ◽  
Author(s):  
Andreas Koster ◽  
Thomas Fischer ◽  
Michael Praus ◽  
Helmut Haberzettl ◽  
Wolfgang M. Kuebler ◽  
...  

Background Cardiac surgery involving cardiopulmonary bypass (CPB) leads to fulminant activation of the hemostatic-inflammatory system. The authors hypothesized that heparin concentration-based anticoagulation management compared with activated clotting time-based heparin management during CPB leads to more effective attenuation of hemostatic activation and inflammatory response. In a randomized prospective study, the authors compared the influence of anticoagulation with a heparin concentration-based system (Hepcon HMS; Medtronic, Minneapolis, MN) to that of activated clotting time-based management on the activation of the hemostatic-inflammatory system during CPB. Methods Two hundred elective patients (100 in each group) undergoing standard cardiac surgery in normothermia were enrolled. No antifibrinolytic agents or aprotinin and no heparin-coated CPB systems were used. Samples were collected after administration of the heparin bolus before initiation of CPB and after conclusion of CPB before protamine infusion. Results There were no differences in the pre-CPB values between both groups. After CPB there were significantly higher concentrations ( &lt; 0.05) for heparin and a significant reduction in thrombin generation (25.2 +/- 21.0 SD vs. 34.6 +/- 25.1), d-dimers (1.94 +/- 1.74 SD vs. 2.58 +/- 2.1 SD), and neutrophil elastase (715.5 +/- 412 SD vs. 856.8 +/- 428 SD), and a trend toward lower beta-thromboglobulin, C5b-9, and soluble P-selectin in the Hepcon HMS group. There were no differences in the post-CPB values for platelet count, adenosine diphosphate-stimulated platelet aggregation, antithrombin III, soluble fibrin, Factor XIIa, or postoperative blood loss. Conclusion Compared with heparin management with the activated clotting time, heparin concentration-based anticoagulation management during CPB leads to a significant reduction of thrombin generation, fibrinolysis, and neutrophil activation, whereas there is no difference in the effect on platelet activation. The generation of fibrin even in the presence of high heparin concentrations most likely has to be attributed to the reduced antithrombin III concentrations or reduced inhibition of clot-bound thrombin. Therefore, in addition to maintenance of higher heparin concentrations, monitoring and substitution of antithrombin III should be considered to ensure more efficient antithrombin activity during CPB.


2010 ◽  
Vol 111 (1) ◽  
pp. 173-179 ◽  
Author(s):  
Nina A. Guzzetta ◽  
Heather G. Monitz ◽  
Janet D. Fernandez ◽  
Tom M. Fazlollah ◽  
Andrea Knezevic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document