Learning, planning, and control for quadruped locomotion over challenging terrain

2010 ◽  
Vol 30 (2) ◽  
pp. 236-258 ◽  
Author(s):  
Mrinal Kalakrishnan ◽  
Jonas Buchli ◽  
Peter Pastor ◽  
Michael Mistry ◽  
Stefan Schaal

We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates , (2) a body trajectory optimizer based on the Zero-Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

2021 ◽  
Vol 8 ◽  
Author(s):  
Junhyeok Ahn ◽  
Steven Jens Jorgensen ◽  
Seung Hyeon Bang ◽  
Luis Sentis

We propose a locomotion framework for bipedal robots consisting of a new motion planning method, dubbed trajectory optimization for walking robots plus (TOWR+), and a new whole-body control method, dubbed implicit hierarchical whole-body controller (IHWBC). For versatility, we consider the use of a composite rigid body (CRB) model to optimize the robot’s walking behavior. The proposed CRB model considers the floating base dynamics while accounting for the effects of the heavy distal mass of humanoids using a pre-trained centroidal inertia network. TOWR+ leverages the phase-based parameterization of its precursor, TOWR, and optimizes for base and end-effectors motions, feet contact wrenches, as well as contact timing and locations without the need to solve a complementary problem or integer program. The use of IHWBC enforces unilateral contact constraints (i.e., non-slip and non-penetration constraints) and a task hierarchy through the cost function, relaxing contact constraints and providing an implicit hierarchy between tasks. This controller provides additional flexibility and smooth task and contact transitions as applied to our 10 degree-of-freedom, line-feet biped robot DRACO. In addition, we introduce a new open-source and light-weight software architecture, dubbed planning and control (PnC), that implements and combines TOWR+ and IHWBC. PnC provides modularity, versatility, and scalability so that the provided modules can be interchanged with other motion planners and whole-body controllers and tested in an end-to-end manner. In the experimental section, we first analyze the performance of TOWR+ using various bipeds. We then demonstrate balancing behaviors on the DRACO hardware using the proposed IHWBC method. Finally, we integrate TOWR+ and IHWBC and demonstrate step-and-stop behaviors on the DRACO hardware.


2011 ◽  
Vol 30 (2) ◽  
pp. 150-174 ◽  
Author(s):  
J. Zico Kolter ◽  
Andrew Y Ng

Legged robots have the potential to navigate a wide variety of terrain that is inaccessible to wheeled vehicles. In this paper we consider the planning and control tasks of navigating a quadruped robot over challenging terrain, including terrain that it has not seen until run-time. We present a software architecture that makes use of both static and dynamic gaits, as well as specialized dynamic maneuvers, to accomplish this task. Throughout the paper we highlight two themes that have been central to our approach: (1) the prevalent use of learning algorithms, and (2) a focus on rapid recovery and replanning techniques; we present several novel methods and algorithms that we developed for the quadruped and that illustrate these two themes. We evaluate the performance of these different methods, and also present and discuss the performance of our system on the official Learning Locomotion tests.


2010 ◽  
Vol 443 ◽  
pp. 652-656
Author(s):  
Shah Md. Mahfuzur Rahman ◽  
Jong Leng Liow

The analysis of cutting forces plays an important role in the design of machine tool systems as well as in the planning, optimization, and control of micro machining processes. Several parameters influence the cutting forces of which the friction is important in causing premature tool failure. This paper presents a force model that includes the friction force for sliding due to the contact between the tool and workpiece at the flank face. Simulation results were compared with the experimental results of Bao and Tansel [1] showing that the model can satisfactorily represent the cutting forces in two dimensional cutting.


Author(s):  
D.L. Roke

The growth in horticultural and some industrial development in selected areas of Northland has led to a need for more specific and careful planning and control of limited resources in a number of major catchments. The potential irrigation demands for horhculture comprise over 60% of Northland's potential water requirements. By contrast, farm water supply needs are only 11% of these needs. Because of their importance to the Northland economy, and in the legislation these needs are given a high priority in water resource management planning. Land uses, including pastoral farming, require careful operation to reduce diffuse sources of pollution.


Sign in / Sign up

Export Citation Format

Share Document