scholarly journals Versatile Locomotion Planning and Control for Humanoid Robots

2021 ◽  
Vol 8 ◽  
Author(s):  
Junhyeok Ahn ◽  
Steven Jens Jorgensen ◽  
Seung Hyeon Bang ◽  
Luis Sentis

We propose a locomotion framework for bipedal robots consisting of a new motion planning method, dubbed trajectory optimization for walking robots plus (TOWR+), and a new whole-body control method, dubbed implicit hierarchical whole-body controller (IHWBC). For versatility, we consider the use of a composite rigid body (CRB) model to optimize the robot’s walking behavior. The proposed CRB model considers the floating base dynamics while accounting for the effects of the heavy distal mass of humanoids using a pre-trained centroidal inertia network. TOWR+ leverages the phase-based parameterization of its precursor, TOWR, and optimizes for base and end-effectors motions, feet contact wrenches, as well as contact timing and locations without the need to solve a complementary problem or integer program. The use of IHWBC enforces unilateral contact constraints (i.e., non-slip and non-penetration constraints) and a task hierarchy through the cost function, relaxing contact constraints and providing an implicit hierarchy between tasks. This controller provides additional flexibility and smooth task and contact transitions as applied to our 10 degree-of-freedom, line-feet biped robot DRACO. In addition, we introduce a new open-source and light-weight software architecture, dubbed planning and control (PnC), that implements and combines TOWR+ and IHWBC. PnC provides modularity, versatility, and scalability so that the provided modules can be interchanged with other motion planners and whole-body controllers and tested in an end-to-end manner. In the experimental section, we first analyze the performance of TOWR+ using various bipeds. We then demonstrate balancing behaviors on the DRACO hardware using the proposed IHWBC method. Finally, we integrate TOWR+ and IHWBC and demonstrate step-and-stop behaviors on the DRACO hardware.

2014 ◽  
Vol 11 (02) ◽  
pp. 1450014 ◽  
Author(s):  
Xuefeng Zhou ◽  
Yisheng Guan ◽  
Haifei Zhu ◽  
Wenqiang Wu ◽  
Xin Chen ◽  
...  

Most of current biped robots are active walking platforms. Though they have strong locomotion ability and good adaptability to environments, they have a lot of degrees of freedom (DoFs) and hence result in complex control and high energy consumption. On the other hand, passive or semi-passive walking robots require less DoFs and energy, but their walking capability and robustness are poor. To overcome these shortcomings, we have developed a novel active biped walking robot with only six DoFs. The robot is built with six 1-DoF joint modules and two wheels as the feet. It achieves locomotion in special gaits different from those of traditional biped robots. In this paper, this novel biped robot is introduced, four walking gaits are proposed, the criterion of stable walking is addressed and analyzed, and walking patterns and motion planning are presented. Experiments are carried out to verify the locomotion function, the effectiveness of the presented gaits and to illustrate the features of this novel biped robot. It has been shown that biped active walking may be achieved with only a few DoFs and simple kinematic configuration.


1967 ◽  
Vol 3 (3) ◽  
pp. 231-234 ◽  
Author(s):  
E. K. Sashina ◽  
�. I. Shklovskii ◽  
A. B. Miller ◽  
Yu. S. Chentsov

2019 ◽  
Vol 16 (04) ◽  
pp. 1950012 ◽  
Author(s):  
Mircea Hulea ◽  
Adrian Burlacu ◽  
Constantin-Florin Caruntu

This paper details an intelligent motion planning and control approach for a one-degree of freedom joint of a robotic arm that can be used to implement anthropomorphic robotic hands. This intelligent control method is based on bio-inspired electronic neural networks and contractile artificial muscles implemented with shape memory alloy (SMA) actuators. The spiking neural network (SNN) includes several excitatory neurons that naturally determine the contraction force of the actuators, and unevenly distributed inhibitory neurons that regulate the excitatory activity. To validate the proposed concept, the experiments highlight the motion planning and control of a single-joint robotic arm. The results show that the electronic neural network is able to intelligently activate motion and hold with high precision the mobile link to the target positions even if the arm is slightly loaded. These results are encouraging for the development of improved biologically plausible neural structures that are able to control simultaneously multiple muscles.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaokun Leng ◽  
Songhao Piao ◽  
Lin Chang ◽  
Zhicheng He ◽  
Zheng Zhu

Biped robot research has always been a research focus in the field of robot research. Among them, the motion control system, as the core content of the biped robot research, directly determines the stability of the robot walking. Traditional biped robot control methods suffer from low model accuracy, poor dynamic characteristics of motion controllers, and poor motion robustness. In order to improve the walking robustness of the biped robot, this paper solves the problem from three aspects: planning method, mathematical model, and control method, forming a robot motion control framework based on the whole-body dynamics model and quadratic planning. The robot uses divergent component of motion for trajectory planning and introduces the friction cone contact model into the control frame to improve the accuracy of the model. A complete constraint equation system can ensure that the solution of the controller meets the dynamic characteristics of the biped robot. An optimal controller is designed based on the control framework, and starting from the Lyapunov function, the convergence of the optimal controller is proved. Finally, the experimental results show that the method is robust and has certain anti-interference ability.


2019 ◽  
Vol 10 (1) ◽  
pp. 274 ◽  
Author(s):  
Javier Gejo García ◽  
Sergio Gallego-García ◽  
Manuel García-García

At the moment, many engineer-to-order manufacturers are under pressure, the overcapacity in many sectors erodes prices and many companies, especially in Europe have gone into recent years in bankruptcy. Due to the increasing competition as well as the new customer requirements, the internal processes of an ETO company play an essential role in order to achieve a unique selling proposition (USP). Therefore this paper exposes how the production planning and control of an engineer-to-order manufacturer can be designed in order to increase its OTD (order-to-delivery) rate as well as decrease the WIP (work-in-progress) and the production lead times. To prove the optimized planning logic, it was applied in a simulation case study and based on the results; the conclusions about its potential are derived.


Author(s):  
Sung-Hee Lee ◽  
Ambarish Goswami

Safety and robustness will become critical issues when humanoid robots start sharing human environments in the future. In physically interactive human environments, a catastrophic fall is the main threat to safety and smooth operation of humanoid robots, and thus it is critical to explore how to manage an unavoidable fall of humanoids. This paper deals with the problem of reducing the impact damage to a robot associated with a fall. A common approach is to employ damage-resistant design and apply impact-absorbing material to robot limbs, such as the backpack and knee, that are particularly prone to fall related impacts. In this paper, we select the backpack to be the most preferred body segment to experience an impact. We proceed to propose a control strategy that attempts to re-orient the robot during the fall such that it impacts the ground with its backpack. We show that the robot can fall on the backpack even when it starts falling sideways. This is achieved by utilizing dynamic coupling, i.e., by rotating the swing leg aiming to generate spin rotation of the trunk (backpack), and by rotating the trunk backward to drive the trunk to touch down with the backpack. The planning and control algorithms for fall are demonstrated in simulation.


2016 ◽  
Vol 13 (2) ◽  
pp. 271-282 ◽  
Author(s):  
Hongbo Zhu ◽  
Minzhou Luo ◽  
Tao Mei ◽  
Jianghai Zhao ◽  
Tao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document