Safety Performance Functions for Signalized Intersections in Large Urban Areas

Author(s):  
Craig Lyon ◽  
Anwar Haq ◽  
Bhagwant Persaud ◽  
Steven T. Kodama

This paper describes the development of safety performance functions (SPFs) for 1,950 urban signalized intersections on the basis of 5 years of collision data in Toronto, Ontario, Canada. Because Toronto has one of the largest known, readily accessible, urban signalized intersection databases, it was possible to develop reliable, widely applicable SPFs for different intersection classifications, collision severities, and impact types. Such a comprehensive set of SPFs is not available for urban signalized intersections from data for a single jurisdiction, despite the considerable recent interest in use of these functions for analyses related to network screening, and the development, prioritization, and evaluation of treatments. The application of a straightforward recalibration process requiring relatively little data means that the SPFs calibrated can be used by researchers and practitioners for other jurisdictions for which these functions do not exist and are unlikely to exist for some time. The value of the functions is illustrated in an application to evaluate a topical safety measure—left-turn priority treatment for which existing knowledge is on a shaky foundation. The results of this empirical Bayes evaluation show that this treatment is quite effective for reducing collisions, particularly those involving left-turn side impacts.

Author(s):  
Kiriakos Amiridis ◽  
Nikiforos Stamatiadis ◽  
Adam Kirk

The efficient and safe movement of traffic at signalized intersections is the primary objective of any signal-phasing and signal-timing plan. Accommodation of left turns is more critical because of the higher need for balancing operations and safety. The objective of this study was to develop models to estimate the safety effects of the use of left-turn phasing schemes. The models were based on data from 200 intersections in urban areas in Kentucky. For each intersection, approaches with a left-turn lane were isolated and considered with their opposing through approach to examine the left-turn–related crashes. This combination of movements was considered to be one of the most dangerous in intersection safety. Hourly traffic volumes and crash data were used in the modeling approach, along with the geometry of the intersection. The models allowed for the determination of the most effective type of left-turn signalization that was based on the specific characteristics of an intersection approach. The accompanying nomographs provide an improvement over existing methods and warrants and allow for a systematic and quick evaluation of the left-turn phase to be selected. The models used the most common variables that were already known during the design phase, and they could be used to determine whether a permitted or protected-only phase would suit the intersection when safety performance was considered.


Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


Author(s):  
Anthony Ingle ◽  
Timothy J. Gates

This study evaluates the intersection of rural roads where a curved roadway segment connects the major flow of through traffic from orthogonal directions. A system of up to three intersections in combination can be represented singly by the situation modeled in this paper as a curved corner intersection site. This paper evaluates the application of random intercept negative binomial (NB) regression modeling to produce safety performance functions, and compares the outcome with NB models using fixed regional effects. At curved corner intersections, installing a combined/merged intersection approach near the midpoint of the curve is a potential countermeasure that by comparison with three-leg configurations experienced 20% fewer intersection crashes. A larger radius of curvature along the curved segment at these types of intersections is also very favorable for safety performance. Each 100 ft increase in the radius of a three-leg or four-leg curved corner intersection is estimated to reduce total non-animal crash occurrence by 5% and 7%, respectively. This study can help safety engineers to prioritize the improvement of rural un-signalized intersections.


2019 ◽  
Vol 296 ◽  
pp. 01006 ◽  
Author(s):  
Diana AL- Nabulsi ◽  
Khair Jadaan

It is now well established that crash occurrences at roadway segments or intersections are associated with a large variety of factors. Safety Performance Functions (SPF) are statistical models developed to predict crash frequencies for various design variables. In Jordan, almost half of all road crashes occur at intersections, mostly in urban areas. There is a significant number of roundabouts throughout Amman which is increasing without evaluating their safety performance. To assess safety benefits of this kind of intersections, transportation professionals need the powerful statistical tool; the SPF. This study aims to develop SPFs for roundabouts in Amman. The models consider the crash frequency, traffic volume and geometric features of all the studied 20 roundabouts. The developed SPFs were statistically significant (R^2 = 0.91) .The findings of the study revealed that crash frequency has a strong relation with the AADT, roundabout entry angle-degrees, entry path radius, splitter radius, pedestrian crossing structure, inscribed diameter, central diameter, circulating width, entry width, number of circle legs. The developed SPFs are evaluated through a comparison with others from developed countries.


2020 ◽  
Vol 6 (1) ◽  
pp. 186-193 ◽  
Author(s):  
Fulu Wei ◽  
Long Chen ◽  
Yongqing Guo ◽  
Mingtao Chen ◽  
Jiaxiang Ma

In order to enrich the car-following theory of urban signalized intersections, and reveal the car-following characteristics of left turn at signalized intersections, the car-following behavior of left turn at signalized intersections is studied. The car-following data acquisition test which was based on high precision GPS was designed. And the car-following characteristics of left-turning vehicles at signalized intersections with different turning radii were analyzed. Based on which, the influence of radius on the car-following behavior was explained, and the New Full Velocity Difference (NFVD) model was developed. The genetic algorithm was used to calibrate the parameters of the NFVD model. The stability and accuracy of the calibrated model was further analyzed by using field data. The results showed that the average speed of the following car increases with the turning radius of the signalized intersection; the car-following speed which the highest frequency occurs under different turning radii tends to increase with the enlargement of turning radius; the larger the average headway distance between the car-following vehicles, the more intense of the driver’s response to the deceleration of the front vehicle. These findings could be used in traffic simulation and to make engineering decisions.


2021 ◽  
Author(s):  
Anwarul Haq Dogar

Traffic accidents cause a huge loss to the society. According to statistics, 50% of all accidents occur at urban intersections and 47% of these are due to left-turn collisions. Countermeasure Implementation at these locations therefore can play a vital role in the improvement of traffic safety. This study illustrates a methodology for evaluation of urban 4-legged signalized intersections treated with left-turn priority phasing. The methodology is applied to three important collisions types: those due to left-turn collisions; those due to left-turn side impact collisions; and all impact types combined collisions. Data used in this analysis were obtained from the City of Toronto. Safety Performance Functions for left-turn and all impact types combined collisions which were developed by the City of Toronto, were calibrated and used in an empirical Bayesian methodology that was employed to estimate the expected frequency of accidents occurring at each intersection in order to evaluate the effectiveness of left-turn priority phasing in reducing this frequency. The results revealed that left-turn priority phasing can be an effective treatment for addressing and reducing the number of collision at signalized intersections. Flashing advance green phasing is more effective in improving safety for two of three types; all left-turn and all impact types combined collisions. Left-turn green arrow (protected/permissive) phasing is more effective for left-turn side impact collisions. By implementing this type of treatment, the number of crashes and the associated monetary loss to society could be significantly reduced.


2021 ◽  
Author(s):  
Anwarul Haq Dogar

Traffic accidents cause a huge loss to the society. According to statistics, 50% of all accidents occur at urban intersections and 47% of these are due to left-turn collisions. Countermeasure Implementation at these locations therefore can play a vital role in the improvement of traffic safety. This study illustrates a methodology for evaluation of urban 4-legged signalized intersections treated with left-turn priority phasing. The methodology is applied to three important collisions types: those due to left-turn collisions; those due to left-turn side impact collisions; and all impact types combined collisions. Data used in this analysis were obtained from the City of Toronto. Safety Performance Functions for left-turn and all impact types combined collisions which were developed by the City of Toronto, were calibrated and used in an empirical Bayesian methodology that was employed to estimate the expected frequency of accidents occurring at each intersection in order to evaluate the effectiveness of left-turn priority phasing in reducing this frequency. The results revealed that left-turn priority phasing can be an effective treatment for addressing and reducing the number of collision at signalized intersections. Flashing advance green phasing is more effective in improving safety for two of three types; all left-turn and all impact types combined collisions. Left-turn green arrow (protected/permissive) phasing is more effective for left-turn side impact collisions. By implementing this type of treatment, the number of crashes and the associated monetary loss to society could be significantly reduced.


2016 ◽  
Vol 43 (7) ◽  
pp. 631-642 ◽  
Author(s):  
Yanyong Guo ◽  
Tarek Sayed ◽  
Mohamed H. Zaki ◽  
Pan Liu

The objective of this study is to evaluate the safety impacts of unconventional outside left-turn lane at signalized intersections. New designed unconventional outside left-turn lanes are increasingly used at signalized intersections in urban areas in China. The unconventional outside left-turn lane design allows an exclusive left-turn lane to be located to the right of through lanes to improve the efficiency and increase the capacity of left-turn movements. However, the design also raises some concerns regarding potential negative safety impacts. The evaluation is conducted using an automated video-based traffic conflict technique. The traffic conflicts approach provides better understanding of collision contributing factors and the failure mechanism that leads to road collisions. Traffic conflicts are automatically detected and time to collision is calculated based on the analysis of the vehicles’ positions in space and time. Video data are collected from a signalized intersection in Nanjing, China, where both traditional inside and unconventional outside left-turn lanes are installed on two intersection approaches. The other two approaches have only inside left-turn lanes. The study compared frequency and severity of conflict for left-turning vehicles as well as the percentage of vehicles involved in conflicts from the inside and outside left-turn lanes. The results show that the intersection approaches with outside left-turn lanes had considerably more conflicts compared to approaches without outside left-turn lanes. As well, the approaches with outside left-turn lanes had significantly higher conflict severity than the approaches without outside left-turn lanes. As such, it is recommended that the trade-off between the improved mobility and negative safety impact of outside left-turn lanes be carefully considered before recommending their installation.


Sign in / Sign up

Export Citation Format

Share Document