Atomic oxygen effects on polymers containing silicon or phosphorus: Mass loss, erosion yield, and surface morphology

2018 ◽  
Vol 31 (8) ◽  
pp. 969-976 ◽  
Author(s):  
Wang Chunbo ◽  
Jiang Haifu ◽  
Tian Dongbo ◽  
Qin Wei ◽  
Chen Chunhai ◽  
...  

The differences among polymers containing silicon or phosphorus, 20% polyhedral oligomeric silsesquioxane polyimide (20%-POSS-PI), 30% polysiloxane- block-polyimides (30%-PSX-PI), poly(siloxane imide) homopolymer (PSX-PI), and arylene ether phosphine oxide homopolymer (P-PPO), on mass loss, erosion yield, and surface morphology were elucidated. The tolerance against atomic oxygen (AO) was improved versus Kapton®H after introducing silicon or phosphorus to the polymers. The relative order of the mass loss was PSX-PI < P-PPO < 20%-POSS-PI < 30%-PSX-PI. In contrast, the erosion yields of 30%-PSX-PI, 20%-POSS-PI, and P-PPO decreased by orders of magnitude (PSX-PI declined by about two orders). The surface of Kapton®H was seriously eroded by AO exhibiting a “carpet-like” shape, and the roughness of the surface of Kapton®H became remarkable as the AO fluence increased. PSX-PI, P-PPO, 20%-POSS-PI, and 30%-PSX-PI at an AO fluence of 5.2 × 1020 atoms/cm2 had different surface morphologies, and the relative order of the surface roughness was PSX-PI < 30%-PSX-PI < 20%-POSS-PI < P-PPO. The 30%-PSX-PI and PSX-PI had minor mass losses and a smooth surface. This kind of material might replace inorganic coatings for applications in low earth orbit.

2015 ◽  
Vol 830-831 ◽  
pp. 699-702 ◽  
Author(s):  
G.N. Arjun ◽  
T.L. Lincy ◽  
T.S. Sajitha ◽  
S. Bhuvaneshwari ◽  
Thomas Deepthi ◽  
...  

Polysiloxane resin copolymer was synthesized through acid catalyzed hydrolysis of methyl triethoxysilane (MTEOS) and diethoxytetramethyldisiloxane (DEOTMDS). The effect of reaction time on the properties of the polymer was studied and this copolymer was characterized by GPC, 29Si NMR, IR, TGA, viscosity, refractive index, specific gravity and solid content. 29Si NMR and IR showed characteristic signals of Si-O-Si linkage which confirmed the formation of the polymer. GPC and solid content analysis showed an increasing trend in molecular weight with reaction time. Thermo gravimetric analysis showed that the polymer was thermally stable upto ≈ 260°C and all the polymers gave a ceramic residue in the range of 77-80% at 900°C. Siloxane prepared inhouse and methyl phenyl silsequioxane (control) were used as coating materials and atomic oxygen (AO) resistance was evaluated on Al-Kapton, carbon polyimide composite and glass polyimide composite. The mass loss and surface morphology of the coated samples were measured at different time intervals. It is observed that mass loss of polysiloxane coated samples was very less, compared to coated control samples. The morphology of all the samples were studied using FESEM. Erosion kinetics and surface morphology investigation indicate that the polysiloxane coating possesses excellent AO resistance, and displays better cracking resistance on AO exposure.


2018 ◽  
Vol 31 (7) ◽  
pp. 831-842 ◽  
Author(s):  
Min Qian ◽  
Xiao Yang Xuan

A clear poly(amic acid) was reinforced by a trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) by direct dissolution, and transparent silicon-reinforced polyimide (Si-RPI) films with different POSS loadings were obtained after curing, showing high transmittance of >90% within 380–800 nm. The Si-RPI films were exposed to a ground hyperthermal atomic oxygen (AO) beam. The erosion depths and derived erosion yields of the materials decreased with POSS loadings. At a 20 wt% POSS loading, the Si-RPI showed an erosion yield of 0.13 × 10−24 cm3 atom−1 at a fluence of 2.79 × 1020 O atoms cm−2. Surface morphology and element composition characterization on Si-RPI indicated that SiOx-based passivating layers were formed on surfaces upon the hyperthermal AO attack. This study suggests a facile way of reinforcing Si into transparent polyimide for a promising candidate of spacecraft coating material operating in low Earth orbit.


2009 ◽  
Vol 52 (9) ◽  
pp. 475-483 ◽  
Author(s):  
Yugo KIMOTO ◽  
Eiji MIYAZAKI ◽  
Junichiro ISHIZAWA ◽  
Hiroyuki SHIMAMURA

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1356 ◽  
Author(s):  
Kui Li ◽  
Dengxun Ren ◽  
Xianzhong Tang ◽  
Mingzhen Xu ◽  
Xiaobo Liu

The surface morphology of nanoparticles significantly affects the final properties and interfacial characteristics of their composites. Thus, investigations on the surface morphology of the nanoparticles is essential to fabricate improved nanoparticle-reinforced composites. Fe3O4/Fe-phthalocyanine (FePc) hybrid microspheres with micro/mesoporous structures were prepared via a solvothermal process and solvent etching method. The surface morphology and compositional distribution were respectively investigated using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) to rule out that FePc monomers have been blended with Fe3O4 to form Fe3O4/FePc hybrid microspheres without serious agglomeration. The surface roughness of Fe3O4/FePc microspheres was investigated by the scanning probe microscope (SPM), and confirmed by the adsorption and desorption isotherms of N2. The effects of the various surface morphologies on the crystallization behavior of crystallizable poly(arylene ether nitrile) (c-PEN) were first employed to confirm the surface characteristics of the resulted microspheres. Results indicated that the etched Fe3O4/FePc microspheres would improve the crystallization degree of c-PEN, due to their much more micro/mesoporous structures than that of original Fe3O4/FePc. Then, Fe3O4/FePc hybrid microspheres reinforced PEN composite films were prepared and their interfacial compatibility was monitored using an SEM. Excellent thermal stability and improved mechanical properties were obtained by combining the etched Fe3O4/FePc and PEN matrix. The excellent surface properties and micro/mesoporous structures make the novel Fe3O4/FePc an excellent candidate of organic/inorganic hybrid fillers and micro/mesoporous materials.


2001 ◽  
Vol 13 (4) ◽  
pp. 225-234 ◽  
Author(s):  
Hiroshi Kinoshita ◽  
Masahito Tagawa ◽  
Kumiko Yokota ◽  
Nobuo Ohmae

Erosion phenomenon of polyimide film under the hyperthermal atomic oxygen beam exposure, which is a simulated low Earth orbit space environment, has been investigated. The polyimide film was spin-coated on a sensor crystal of a quartz crystal microbalance, and the mass of the film was measured under the atomic oxygen beam exposure. The spin-coated polyimide film which was exposed to a 4.7 eV atomic oxygen beam showed a mass gain at the beginning of the reaction and then steady-state mass loss followed. The experimental results of the mass change was analysed by the computational model, and the results showed that the carbon abstraction rate at the oxygen-adsorbed sites was two orders higher than that at the unoxidized polyimide surface. The computational results suggested that a large fraction of the carbon abstraction reaction occurred in the oxygen-adsorbed site through a Langmuir–Hinshelwood reaction mechanism.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1013 ◽  
Author(s):  
Bohan Wu ◽  
Yan Zhang ◽  
Dayong Yang ◽  
Yanbin Yang ◽  
Qiang Yu ◽  
...  

Protection of polymeric materials from the atomic oxygen erosion in low-earth orbit spacecrafts has become one of the most important research topics in aerospace science. In the current research, a series of novel organic/inorganic nanocomposite films with excellent atomic oxygen (AO) resistance are prepared from the phosphorous-containing polyimide (FPI) matrix and trisilanolphenyl polyhedral oligomeric silsesquioxane (TSP–POSS) additive. The PI matrix derived from 2,2’-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,5-bis[(4-amino- phenoxy)phenyl]diphenylphosphine oxide (BADPO) itself possesses the self-healing feature in AO environment. Incorporation of TSP–POSS further enhances the AO resistance of the FPI/TSP composite films via a Si–P synergic effect. Meanwhile, the thermal stability of the pristine film is maintained. The FPI-25 composite film with a 25 wt % loading of TSP–POSS in the FPI matrix exhibits an AO erosion yield of 3.1 × 10−26 cm3/atom after an AO attack of 4.0 × 1020 atoms/cm2, which is only 5.8% and 1.0% that of pristine FPI-0 film (6FDA-BADPO) and PI-ref (PMDA-ODA) film derived from 1,2,4,5-pyromellitic anhydride (PMDA) and 4,4’-oxydianline (ODA), respectively. Inert phosphorous and silicon-containing passivation layers are observed at the surface of films during AO exposure.


Shinku ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 587-592 ◽  
Author(s):  
Nobuo OHMAE

2020 ◽  
Vol 32 (6) ◽  
pp. 681-692 ◽  
Author(s):  
Dan Zhao ◽  
Jinmei He ◽  
Nan Zheng ◽  
Yudong Huang

Polyhedral oligomeric silsesquioxane (POSS) was grafted onto the surface of carbon fibres (CFs) to fabricate carbon fibre/epoxy (CF/EP) composites with improved interlaminar shear strength (ILSS) and atomic oxygen (AO) erosion resistance. POSS-CF was prepared by reacting amine groups on the pretreated CF surface with the POSS to form a continuous uniform layer of siloxane oligomers. X-Ray photoelectron spectroscopy, scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that POSS was successfully grafted onto the CF surface. The ILSS and AO erosion resistance of the POSS-treated CFs and CF-EP interface were improved because a SiO2 passivation layer formed with AO exposure, especially with POSS-EP0409. This is an effective solution for enhancing the interfacial bonding force and interfacial AO erosion resistance for the low-Earth orbit environment.


1991 ◽  
Vol 69 (8-9) ◽  
pp. 1190-1208 ◽  
Author(s):  
R. C. Tennyson

This paper describes the operation and performance of an atomic-oxygen (AO) beam facility developed at the University of Toronto Institute for Aerospace Studies (UTIAS), capable of providing ground-state neutral oxygen atoms at ~ 2.2 eV for flux levels as high as ~ 1016 atoms (cm2 s)−1. Results are presented on the AO erosion of polymer thin films and composite materials containing graphite and aramid fibres in epoxy matrices. Comparisons with space flight tests are also given, including studies of samples recently retrieved from the UTIAS composite-materials experiment on the NASA Long Duration Exposure Facility after 70 months exposure in low Earth orbit. Parameters that have been investigated include synergistic effects of UV radiation, surface-morphology changes, and accelerated testing.


Sign in / Sign up

Export Citation Format

Share Document