Electro-thermal-based finite element simulation and experimental validation of material removal in static gap single-spark die-sinking electro-discharge machining process

Author(s):  
Saeed Assarzadeh ◽  
Majid Ghoreishi

Existing single spark models are subjected to too simplistic assumptions such as uniform or point heat source, constant plasma radius, invariable materials properties and constant surface temperature during discharge making them far from reality. In this study, more realistic assumptions including Gaussian type distribution of spark heat flux, temperature dependent materials properties, latent heat of melting and expanding plasma channel with pulse current and time have been made to establish a comprehensive modeling platform. The ABAQUS FEM software has been used to simulate the mechanism of crater formation due to a single discharge. The non-uniform thermal flux was programmed through the DFLUX subroutine. The simulation results show that the temperature of work piece decreases as the discharge time increases while the volume of melted and evaporated material increases. A specially designed single spark experimental set-up was developed in laboratory to carry out a few single spark tests for verification purposes. The obtained craters morphologies were examined by optical microscopy and scanning profilometer. It has been shown that the present approach outperforms other previously developed thermal models with respect to cavity outline and size possessing the maximum confirmation errors of 18.1% and 14.1% in predicting crater radius and depth, respectively. Parametric analysis reveals that the melting boundary moves onward by increasing discharge current, whereas it moves back prolonging discharge time. Finally, a closer proximity to experimental material removal rates than those predicted by analytical approach has been recognized which confirms its more precise generalization capabilities towards the real state EDM process.

2016 ◽  
Vol 693 ◽  
pp. 775-779
Author(s):  
J.X. Xue ◽  
H.B. Wu ◽  
Q.P. Sun

The evolution of crack models based on fracture mechanics is reviewed. The brittle cracking model in Abaqucs is used to simulate the machining process of Al2O3. The result shows that it’s appropriate to simulate the machining process of ceramics with fracture energy cracking criterion and post-failure constitutive relation in a smeared cracking representation. Although more works are needed in the future to resolve the mesh sensitivity. The material removal mechanism of ceramics is confirmed to be the brittle fracture regime.


2014 ◽  
Vol 592-594 ◽  
pp. 479-483 ◽  
Author(s):  
Hemant Walkar ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Electric discharge machining (EDM) is a non-conventional machining process in which material removal take place by a series of electric spark generated between the small gap of both electrode and both immersed in dielectric medium. The gap conditions of EDM significntly affect the stability of machining process. Thus, the machining performance would be improved by removing the debris from the machining gap fastly. In view of this, the objective of present work was to investigate the effect of magnetic field on the material removal rate (MRR) and surface roughness (SR), in conjunction with the variation of electrical parameters like pulse on-off times and gap current, while keeping other electrical parameters and work piece/ tool material constant. Experimental results showed that the magnetic field assisted EDM improves the process stability. Moreover, the EDM process with high efficiency and quality of machined parts could fulfill the requirements of modern manufacturing industries.


2019 ◽  
Vol 1 (1) ◽  
pp. 49-55
Author(s):  
Mahesh Reddy Vaddhi ◽  
M. Leela Ramesh ◽  
B Malsoor ◽  
Sai Teja

Abrasive Jet Machining (AJM) is the process of material removal from a work piece by the application of a high speed stream of abrasive particles carried in a gas medium from a nozzle. The material removal process is mainly by erosion. The AJM can principally be wont to cut shapes in arduous and brittle materials like glass, ceramics etc. In this concept, a model of the Abrasive Jet Machine is proposed to design by taking into consideration of commercially available components. Care will be taken to use less fabricated components rather than directly procuring them, because, the lack of accuracy in fabricated components would lead to a diminished performance of the machine. To analyse its performance, Drilling of glass sheets with different abrasives and different nozzles will be carried out by Abrasive Jet Machining process (AJM) in order to determine its machinability.


2012 ◽  
Vol 188 ◽  
pp. 330-338 ◽  
Author(s):  
Agostino Maurotto ◽  
Anish Roy ◽  
Vladimir I. Babitsky ◽  
Vadim V. Silberschmidt

Efficient machining of advanced Ti- and Ni-based alloys, which are typically difficult-to-machine, is a challenge that needs to be addressed by the industry. During a typical machining operation of such alloys, high cutting forces imposed by a tool on the work-piece material lead to severe deformations in the process zone, along with high stresses, strains and temperatures in the material, eventually affecting the quality of finished work-piece. Conventional machining (CT) of Ti- and Ni-based alloys is typically characterized by low depths of cuts and relatively low feed rates, thus adversely affecting the material removal rates (MRR) in the machining process. In the present work, a novel machining technique, known as Ultrasonically Assisted Turning (UAT) is shown to dramatically improve machining of these intractable alloys. The developed machining process is capable of high MRR with an improved surface quality of the turned work-piece. Average cutting forces are significantly lower in UAT when compared to those in traditional turning techniques at the same machining parameters, demonstrating the capability of vibration-assisted machining as a viable machining method for the future.


2014 ◽  
Vol 592-594 ◽  
pp. 854-858
Author(s):  
N.S. Pawar ◽  
R.R. Lakhe ◽  
R.L. Shrivastava

According to the most of the studies dealing with micro grooving, cutting, leading to lower material removal Abrasive jet machining is traditional process. Invention was made to create those needs. A number of investigation or researches were carried out by imminent personality but no detailed information and design has provided about cylindrical vibrating chamber or mixing chamber. This change in shape gives better velocity to abrasive particles and non sticking characteristic gives the better effect of erosion of material on work piece and scattering of particle towards objects. The parameter stand off distance, variable pressure, material removal rate used for this experimental study has also moderate. The work carried out with Alumina nozzle. The abrasive powder feed rate is controlled by the amplitude of mixing chamber. The root mean square value is 0.988 in linear regression model. The estimated standard error is 0.00115 which is very less. The performance of sand gives the similar better model result as given by traditional using different parameter. The taper of cut is higher with this mixing particle and better feed rate.


2014 ◽  
Vol 704 ◽  
pp. 48-57
Author(s):  
Ankit Panchal ◽  
Amit Patel ◽  
S. Sheth ◽  
Anand Joshi

Electrochemical Machining is one of established non-traditional machining process which is widely used in micro machining parts. Purpose of this research paper is to investigate effect of Electrochemical Machining under low voltage and relatively high current rating on concentrated or masked work piece of Copper and Carbon Steel EN9. Developing Machine set up with the help of PLC and SCADA device for Accurate Positioning and reliable data supervising which includes ECM, basic working principle of ECM, selection and development of components, implementation and to analyze the effect of change in the parameters of the process. Selection and development part will cover design of frame, fixture, pump, filter, tool, electrolyte, and work piece material as a mechanical part, selection of electric drive system and PLC. PLC programming and hardware circuit as electrical and programming part.


Electrical discharge machining (EDM) is one of the oldest nontraditional machining processes, commonly used in automotive, aerospace and ship building industries for machining metals that have high hardness, strength and to make complicated shapes that cannot be produced by traditional machining techniques. The process is based on the thermoelectric energy between the work piece and an electrode. EDM is slow compared to conventional machining, low material removal rate, high surface roughness, high tool wear and formation of recast layer are the main disadvantages of the process. Tool wear rate, material removal rate and surface quality are important performance measures in electric discharge machining process. Numbers of ways are explored by researchers for improving and optimizing the output responses of EDM process. The paper summarizes the research on die-sinking EDM relating to the improvements in the output response.


2019 ◽  
Vol 895 ◽  
pp. 32-37
Author(s):  
V.R. Devadath ◽  
H.P. Raju

The traditional finishing processes are incapable of producing required surface finish and other characteristics in difficult-to machine materials like Nickel based superalloys and also complex geometrical shapes of engineering components. Hence to achieve these goals non-traditional micro-machining processes have been developed. Extrusion honing (EH) is one of the non-traditional micro-machining process to debur, radius, polish, and remove recast layer of components in a wide range of applications. In this process material is removed from the work-piece by flowing abrasive laden medium under pressure through or past the work surface to be finished. Components made up of complex passages having surface/areas inaccessible to traditional methods can be finished to high quality and precision by this process. Hastelloy C22 offers resistance to both aqueous corrosion and attack at elevated temperatures and it is a difficult metal to machine using traditional techniques. In this study, micro finishing of internal surface of Hastelloy C22 material having predrilled passage diameters 7, 8, 9 and 10 mm have been performed in an indigenously built hydraulic operated one way extrusion honing setup. For the present EH process, patented polymer mixed with SiC abrasive at 35% volume concentration was used as carrier medium. The study was performed for 46, 54, and 60 grit sizes of SiC abrasive. The material removal in EH process varies with passage diameter and grit size of abrasives at each trial. A feed forward back propagation neural network model has been developed for the prediction of material removal and it has successfully predicted material removed in each trial of EH process.


The traditional machining consists of a specific contact between the tool and work piece. As a result of this contact the tool may wear out after a few operations. In addition to that, the MRR (Material Removal Rate), Surface Finish, etc. is also lowered. As a result of these drawbacks, traditional or conventional machining processes cannot be used to machine ceramic based alloys and thus we opt for unconventional machining process. The Electrical Discharge Machine contains of two spaces one is Electrode and other is Work piece. In this concept the among the tool wear rate is moderate and the surface roughness is to be poor. The tool cost is so high. Hence continuously tool modification is not possible. So in the work main objective of the problem is reduced the tool wear rate and increase the MRR. (Material removal rate). So in the case we are consider in the surface roughness. The surface roughness is to be high is the taken in industrial application. So we have focus with surface roughness. These are the considering with in our problems. In our aim is reducing the toll wear and improve the Material Remove rate. In order to addition of graphite in Electrolyte. When added the electrolyte in Graphite the Toll wear rate decrease and increase a material Removal Rate. Finally we have disc the DOE process


2013 ◽  
Vol 7 (5) ◽  
pp. 581-592
Author(s):  
Raoul Roth ◽  
◽  
Beck Lukas ◽  
Hartmi Balzer ◽  
Friedrich Kuster ◽  
...  

In the last years dry electrical discharge machining (DEDM) has been proposed as an alternative to the traditional EDM. The main reason for these efforts is the absence of a liquid dielectric which results in a simpler and environmentally friendly process. This paper presents measurements of the material removal rate in function of different tool electrodes, work piece materials and flushing gases put in relation with the breakdown behavior of the process. Evaluation of absolute and current specific material removal rate are presented. The data show a big influence on the material removal rate depending on the combination of work piece material and flushing gas. Two different effects are observed, the first enhancing the removal per spark and the second one reducing the short circuiting occurrence. The share of these two effects on the enhancing of the absolute material removal rate also differs in function of the work piece material. It is suggested that the chemical reaction strongly influences the process in two different ways, on one hand releasing a surplus of energy and on the other hand changing the debris particles’ properties.


Sign in / Sign up

Export Citation Format

Share Document