Parameter optimisation of laser cladding repair for an Invar alloy mould

Author(s):  
Shichao Zhu ◽  
Wenliang Chen ◽  
Xiaohong Zhan ◽  
Liping Ding ◽  
Junjie Zhou

Laser cladding repair is an advanced technology for repairing Invar alloy moulds; however, the influences of various processing parameters on the quality of the Invar alloy moulds have yet to be determined. To explore the optimisation of laser cladding repair parameters, analyses of the geometric features and microstructure of the cladding layer were conducted. First, the influences of different powder feeding rates and scanning speeds on the dilution rate of the substrate were investigated by establishing a mathematical model of the laser power attenuation. Next, the influences of the parameters on the geometric features of the cladding layer were analysed. Finally, the influences of the parameters on the microstructure of the cladding layer were evaluated. At a laser power of 2300 W, a scanning speed of 3 m/min, and a powder feeding rate of 9 g/min, the best results of the width, height, dilution rate, roughness, and contact angle of the cladding layer were obtained. The results of this study indicated that excellent metallurgical bonding occurred between the cladding layer and the interface layer, and that the intended geometric features and desired microstructure of the cladding layer were obtained.

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 408
Author(s):  
Fangping Yao ◽  
Lijin Fang ◽  
Xiang Chen

In order to improve the resistance to thermal fatigue and wear resistance of H13 hot-working tool steel, a nickel-based composite coating was prepared on its surface by laser cladding technology. The relationship was studied between the main processing parameters and the size of the cladding layer such as height and width. Based on the orthogonal polynomial regression method, the relationships were modeled mathematically between laser power, scanning speed, powder feeding voltage and microhardness. This model was proved to be able to predict the laser power and powder feeding voltage under 1100 Hv microhardness.


2014 ◽  
Vol 551 ◽  
pp. 3-6
Author(s):  
Shu Guo Zhao ◽  
Xiao Min Yao ◽  
Rui Li

The Cubic boron nitride (CBN) coating are prepared by laser cladding on the TC11 surface.The hardness of cladding coating were researched by means of mechanical property testing.The result indicated that the coating micro-hardness increases with increasing laser power when the other parameters are fixed.With the laser power increasing,Injection of energy increases,The reinforced phase increased,microhardness along with it enhancement.With the increase of the scanning speed within chose, the microstructure of the cladding layer changes tiny and uniform,the microhardness were increased,The hardness was increased greatly which after Laser hardening. The maximum values of them are as about five times as that of the substrate.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2061 ◽  
Author(s):  
Jiang Ju ◽  
Yang Zhou ◽  
Maodong Kang ◽  
Jun Wang

The mould foot roller is a key component of a continuous casting machine. In order to investigate the possibility of using laser cladding to repair mould foot roller, Fe-based powders and 42CrMo steel are used in this work. The laser cladding process parameters were optimized by orthogonal experiments. The chemical compositions, microstructure, properties of the cladding layer under the optimum process parameters, and substrate were systematically investigated by using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), microhardness test, wear test, and salt spray corrosion test. The results indicate that the primary factor affecting the width and depth of the cladding layer is laser power. The scanning speed also has a significant effect on the height of the cladding layer. The optimum process parameters for repairing the mould foot roller are 2 kW laser power, 4 mm/s scanning speed, and 15 g/min feeding rate of powder. Along the depth direction of the cladding layer, the microstructure of the coating gradually transforms from plane crystal, cell grains, or dendrites to equiaxed grains. The matrix is mainly martensite with retained austenite; the eutectic phase is composed of netlike M2B, particulate M23(C,B)6, and M7(C,B)3 phase. The hardness of the cladding layer is significantly improved, about three times that of the substrate. The weight loss of the cladding layer is just half that of the substrate. Its wear resistance and corrosion resistance have been significantly improved. The work period of the laser cladding-repaired foot roller is much longer than for the surfacing welding-repaired one. In summary, laser cladding technology can increase the life of mould foot rollers.


2021 ◽  
Author(s):  
Chenguang Guo ◽  
Ning Lv ◽  
Haitao Yue ◽  
Qiang Li ◽  
Jianzhuo Zhang

Abstract Experimental research on laser additive remanufacturing technology of heavy-duty sprocket was carried out. The influences of laser power, scanning speed and powder feeding rate on cladding height, cladding area, melting area and dilution rate were compared and analyzed. The prediction models of the combination of process parameters with the geometric characteristics of cladding layer and dilution were established. A multi-objective process parameter optimization model with the maximum cladding height and cladding area maximum, the minimum melting area and dilution rate as objective functions was established, and the model was optimized and solved based on MOPSO algorithm. The laser additive remanufacturing repairing experiment of damaged sprocket was carried out by using the optimal parameters combination, and the microstructure and mechanical properties of the repaired region were analyzed. The results show that the scanning speed and powder feeding rate are the main factors influencing the geometric characteristics and dilution of the cladding area, and the models have good prediction accuracy. The optimal process parameters (1150 W, 950 mm/min, 3.8 rad/min) obtained by MOPSO algorithm is adopted to repair the damaged sprocket. The repaired area without cracks and pores, the cladding layer shows good metallurgical bonding with the substrate and the microhardness is twice that of the substrate. The experimental results prove that the laser additive remanufacturing technology is feasible to repair the damaged heavy-duty sprocket and has a strong engineering application prospect.


2020 ◽  
Vol 990 ◽  
pp. 67-72 ◽  
Author(s):  
Bin Han ◽  
Hui Wang ◽  
Jia Yi Lin ◽  
Xi Hao Liu

Laser cladding technology is widely used in the surface modification of parts due to its excellent properties such as high hardness, high wear resistance and corrosion resistance. Extends the life of these parts under normal use conditions, greatly reducing production costs. In this paper, the influence of different parameters such as laser cladding process parameters—laser power and scanning speed, and their interaction on the performance of mold cladding layer is discussed, and the future development direction of laser cladding technology in mold is prospected.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 947 ◽  
Author(s):  
Guofu Lian ◽  
Yang Zhang ◽  
Hao Zhang ◽  
Xu Huang ◽  
Changrong Chen ◽  
...  

Laser cladding on curved surfaces is essential in industrial applications for restoration and remanufacturing of high-value parts. This study investigated the influence of different factors on clad width, clad height, and dilution rate in curved surface laser cladding with curved path. Mathematical models were developed using central composite designs to predict these geometric characteristics by controlling laser power, scanning speed, gas flow, and altering the outside radius of the cylindrical substrate. Analysis of variance and response surface methodology indicated that clad width increased with increasing laser power and reducing scanning speed. Clad height positively correlated to laser power and negatively correlated to the outside radius of the cylindrical substrate. Increasing the laser power while decreasing the scanning speed led to an increase in dilution rate. Afterwards, the geometric characteristics of the clad were improved by optimizing these factors with the target to maximize clad width and height as well as to minimize dilution rate. The difference between model predictions and experimental validations for clad width, clad height, and dilution rate were 3.485%, 3.863%, and 6.566%, respectively. The predicted accuracy was verified with these models, and they were able to provide theoretical guidance to predict and control the geometric characteristics of curved surface laser cladding with a curved path.


2020 ◽  
Vol 62 (7) ◽  
pp. 698-702
Author(s):  
L. Yinghua ◽  
W. Kaiming

Abstract Laser cladded NiCrBSi alloy coating was fabricated on the surface of a 42CrMo roll using a 6 kW fiber laser. The effects of the laser power, scanning speed and feeding rate on the cladding layer form, size, dilution rate, microstructure, and hardness of coating were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and a microhardness tester. The results show that the microstructure, size, dilution rate and hardness of the cladding layer had changed with an increase in laser power, powder feeding rate and scanning speed. The appropriate parameters of the laser cladding experiment are as follows: the laser power is 2000 W, powder feed rate 20 g × min-1, the scanning speed 4 mm × s-1. The cladding layer and the substrate exhibit good metallurgical bonding under the above processing parameters. The microstructure of the cladding layer is fine, the dilution rate is 9.8 wt.-%, and the microhardness of the cladding layer is 710.7 HV.


2012 ◽  
Vol 499 ◽  
pp. 114-119 ◽  
Author(s):  
Ming Di Wang ◽  
Shi Hong Shi ◽  
X.B. Liu ◽  
Cheng Fa Song ◽  
Li Ning Sun

Numerical simulation of laser cladding is the main research topics for many universities and academes, but all researchers used the Gaussian laser light source. Due to using inside-beam powder feeding for laser cladding, the laser is dispersed by the cone-shaped mirror, and then be focused by the annular mirror, the laser can be assumed as the light source of uniform intensity.In this paper,the temperature of powder during landing selected as the initial conditions, and adopting the life-and-death unit method, the moving point heat source and the uniform heat source are realized. In the thickness direction, using the small melt layer stacking method, a finite element model has been established, and layer unit is acted layer by layer, then a virtual reality laser cladding manu-facturing process is simulated. Calculated results show that the surface temperature of the cladding layer depends on the laser scanning speed, powder feed rate, defocus distance. As cladding layers increases, due to the heat conduction into the base too late, bath temperature will gradually increase. The highest temperature is not at the laser beam, but at the later point of the laser beam. In the clad-ding process, the temperature cooling rate of the cladding layer in high temperature section is great, and in the low-temperature, cooling rate is relatively small. These conclusions are also similar with the normal laser cladding. Finally, some experiments validate the simulation results. The trends of simulating temperature are fit to the actual temperature, and the temperature gradient can also ex-plain the actual shape of cross-section.


2011 ◽  
Vol 138-139 ◽  
pp. 732-736
Author(s):  
Ba Sheng Ouyang ◽  
Run Juan You

Cladding experiment with parameter variations was presented to manufacture the better processing property coating by laser cladding self-fused Ni-based ceramic powder of ZrO2 composite on the excircle surface of 304 SUS. The influence of the laser process parameters on macroscopic view, microstructure and micro-hardness of the laser cladding layers were investigated. The results show that we can get better coating when laser power is 1.5KW, and that the cladding layer microstructure has the trend of refined framework with the growing of scanning speed; micro-hardness will be higher and distribution from substratum to surface with little fluctuate by optimizing scanning speed.


Author(s):  
Lei Che

Laser cladding technology is highly suitable for the remanufacturing of thin-walled and easily deformable parts due to its concentrated energy density. Due to the high temperature and high pressure corrosion environment, the valve sealing surface is prone to corrosion, wear and other failures. A nickel-based tungsten carbide alloy layer was prepared on the valve sealing surface substrate material by laser cladding process. By designing orthogonal experiments, the effects of laser power (P), scanning speed (Vb), powder feeding rate (Vf), and WC content (wt%) on the alloy layer were investigated. A fuzzy comprehensive evaluation method including macroscopic quality, microstructure, microhardness, anti-wear performance, oxidation resistance, compactness and corrosion resistance was proposed. The experimental results showed that the hardness, oxidation resistance and corrosion resistance of the laser alloy layer are significantly improved compared with the matrix; the optimum process parameters and the addition ratio of WC powder are laser power (P) of 1.1 kW and scanning speed (Vb) of 800 mm/min. The powder feeding rate (Vf) was 20%, and the WC content was 20% by weight.


Sign in / Sign up

Export Citation Format

Share Document