Creep–rupture model of aluminum alloys: Cohesive zone approach

Author(s):  
Kyungmok Kim

In this article, a creep–rupture model of aluminum alloys is developed using a time-dependent cohesive zone law. For long-term creep rupture, a time jump strategy is used in a cohesive zone law. Stress–rupture scatter of aluminum alloy 4032-T6 is fitted with a power law form. Then, change in the slope of a stress-rupture line is identified on a log–log scale. Implicit finite element analysis is employed with a model containing a cohesive zone. Stress–rupture curves at various given temperatures are calculated and compared with experimental ones. Results show that a proposed method allows predicting creep–rupture life of aluminum alloys.

Author(s):  
Kouichi Maruyama ◽  
Kyosuke Yoshimi

Long term creep rupture life is usually evaluated from short term data by a time-temperature parameter (TTP) method. The apparent activation energy Q for rupture life of steels sometimes changes from a high value of short term creep to a low value of long term creep. However, the conventional TTP analyses ignore the decrease in Q, resulting in the overestimation of rupture life recognized recently in advanced high Cr ferritic steels. A multi region analysis of creep rupture data is applied to a creep data set of Gr.122 steel; in the analysis a creep rupture data is divided into several data sets so that Q value is unique in each divided data set. The multi region analysis provides the best fit to the data and the lowest value of 105 h creep rupture strength among the three ways of data analysis examined. The conventional single region analysis cannot correctly represent the data points and predicts the highest strength. A half of 0.2% proof stress could not be an appropriate boundary for dividing data to be used in the multi region analysis. In the 2001 Edition of ASME Code an F average concept has been proposed as a substitution for the safety factor of 2/3 for average rupture stress. The allowable stress of Gr.122 steel may decrease significantly when the F average concept and the multi region analysis are adopted.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Masakazu Fujitsuka ◽  
Hideaki Kushima

Creep test of ASME Grade 23 steel has been conducted at 625 and 650°C in helium gas atmosphere. Long-term creep strength of the steel in helium gas was compared with that in air and the influence of oxidation on long-term creep strength was investigated. Creep rupture strength drop was observed in the long-term at 625 and 650°C in air, and the same creep rupture strength drop was observed also in helium gas at 625°C. On the other hand, although creep rupture strength drop was observed in the long-term at 650°C in helium gas, creep rupture life in the long-term in helium gas was slightly longer than that in air at 650°C. Creep rupture life in the long-term at 650°C in air is reduced by not only degradation due to microstructural change, but also marked oxidation, however, that at 625°C is considered to be shortened mainly by a degradation caused by microstructural change. Long-term creep strength of ASME Grade 23 steel at 600°C and above should be reevaluated in consideration of strength drop due to microstructural change.


2008 ◽  
Vol 490 (1-2) ◽  
pp. 66-71 ◽  
Author(s):  
Hassan Ghassemi Armaki ◽  
Kouichi Maruyama ◽  
Mitsuru Yoshizawa ◽  
Masaaki Igarashi

Author(s):  
Christopher Ramirez ◽  
Mohammad Shafinul Haque ◽  
Calvin Maurice Stewart

It is common practice to perform accelerated creep testing (ACT) using time-temperature parameter (TTP) models. The TTP models are calibrated to creep-rupture data at high temperature and/or stress and extrapolate to lower temperature and/or stress where data is not available. The long-term creep rupture behavior (at low temperature and stress) is often not available due to the quantity, duration, and cost of testing. A limited scope of creep-rupture data is often analyzed using the TTP models. When conducting long-term extrapolation, statistical uncertainty becomes an issue. The ability of the TTP models to accurately predict creep-rupture at long life is often limited and the inherent material properties can dramatically influence creep-rupture life. Unfortunately, there is no consensus on the statistic for assessing the quality of TTP extrapolation. This study demonstrates methodology to assessing the uncertainty in creep rupture predictions for 316SS using the Larson Miller parameter. Over 2,000 creep-rupture data points are collected and digitized from the NIMS, ASM, MAPTIS, and ORNL databases; metadata such as the material’s form, thermomechanical processing, and chemical composition are recorded. Statistical uncertainty is measured using the “Z parameter”, which describes the deviation of creep-rupture data to a TTP model. The ability of the TTP models to extrapolate to long life is analyzed via exclusion of data. This is accomplished by: excluding 50% of the data, and by excluding the longest 10% of the data. It is shown that culling data in any way produces more conservative creep rupture predictions. The spread of the dataset will also affect the width of the reliability bands.


Author(s):  
K. Maruyama ◽  
J. Nakamura ◽  
K. Yoshimi

Conventional time-temperature-parameter (TTP) methods often overestimate long-term rupture life of creep strength enhanced ferritic steels. Decrease in activation energy Q for rupture life in long-term creep is the cause of the overestimation, since the TTP methods cannot deal with the change in Q. Creep rupture data of a heat of Gr.122 steel (up to 26200h) were divided into several data sets so that Q was unique in each divided data set. Then a TTP method was applied to each divided data set for rupture life prediction. This is the procedure of multi-region analysis of creep rupture data. The predicted rupture lives have been reported in literature. Long-term rupture lives (up to 51400h) of the same heat of the steel have been published in 2013. The multi-region analysis of creep rupture life can predict properly the long-term lives reported. Stress and temperature dependences of rupture life show similar behavior among different heats. Therefore, database on results of the multi-region analyses of various heats of the steel is helpful for rupture life estimation of another heat. Paper published with permission.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
K. Maruyama ◽  
J. Nakamura ◽  
K. Yoshimi

Conventional time-temperature-parameter (TTP) methods often overestimate long-term rupture life of creep strength enhanced ferritic steels. Decrease in activation energy Q for rupture life in long-term creep is the cause of the overestimation, since the TTP methods cannot deal with the change in Q. Creep rupture data of a heat of Gr.122 steel (up to 26,200 h) were divided into several data sets so that Q was unique in each divided data set. Then a TTP method was applied to each divided data set for rupture life prediction. This is the procedure of multiregion analysis of creep rupture data. The predicted rupture lives have been reported in literature. Long-term rupture lives (up to 51,400 h) of the same heat of the steel have been published in 2013. The multiregion analysis of creep rupture life can predict properly the long-term lives reported. Stress and temperature dependences of rupture life show similar behavior among different heats. Therefore, database on results of the multiregion analyses of various heats of the steel is helpful for rupture life estimation of another heat.


Author(s):  
Junlin Huang ◽  
Keyi Zhou ◽  
Jianqun Xu ◽  
Xiaohu Xu

Taking into account the effects that steam-side oxidation has on the effective load-bearing thickness and temperature of tube wall, a systematic probabilistic estimation method for the long-term creep rupture life of T91 alloy superheater tube is proposed in this work. The new creep strength assessment results of T91 alloy are utilized. Considering the influence of uncertain factors including the geometry dimensions and operational conditions, instead of usual deterministic methods, probabilistic life estimation is performed. A concept referred to as survival probability which reflects the possibility for the long-term creep rupture life to be longer than a given time is defined, and the effects of initial inner tube diameter, steam temperature and steam flow on the survival probability are analyzed. The results reveal that the increase of initial inner tube diameter or the steam temperature will decrease the survival probability, while the steam flow has an opposite effect. Measures that can be adopted to improve survival probability are also introduced. This work can provide reference for the design of high temperature steam generation components in coal-fired power plants. Besides, it is also expected that this work can guide the determination of metallographic inspection and replacement schedule of these components.


2006 ◽  
Vol 129 (3) ◽  
pp. 449-453 ◽  
Author(s):  
Kouichi Maruyama ◽  
Kyosuke Yoshimi

Long-term creep rupture life is usually evaluated from short-term data by a time-temperature parameter (TTP) method. The allowable stress of Gr.122 steel listed in the ASME code has been evaluated by this method and is recognized to be overestimated. The objective of the present study is to understand the causes of the overestimation and propose appropriate methodology for avoiding the overestimation. The apparent activation energy Q for rupture life of the steel changes from a high value of short-term creep to a low value of long-term creep. However, the decrease in Q is ignored in the conventional TTP analyses, resulting in the overestimation of rupture life. A multiregion analysis of creep rupture data is employed to avoid the overestimation; in the analysis creep rupture data are divided into a couple of regions so that the Q value is unique in each divided region. The multiregion analysis provides a good fit to the data and the lowest value of 105h creep rupture strength among the three ways of data analysis examined. A half of 0.2% proof stress cannot provide an appropriate boundary for dividing data to be used in the multiregion analysis. In the 2001 edition of the ASME code an F average concept has been proposed as a substitution for the safety factor of 2∕3 for average rupture stress. The allowable stress of Gr.122 steel changes significantly depending on the allowable stress criteria as well as the methods of rupture data analysis: i.e., from 74MPato48MPa.


2007 ◽  
Vol 561-565 ◽  
pp. 163-166
Author(s):  
Yoshihiro Terada ◽  
Tatsuo Sato

Creep rupture tests were performed for a die-cast Mg-Al-Ca alloy AX52 (X representing calcium) at 29 kinds of creep conditions in the temperature range between 423 and 498 K. The creep curve for the alloy is characterized by a minimum in the creep rate followed by an accelerating stage. The minimum creep rate (ε& m) and the creep rupture life (trup) follow the phenomenological Monkman-Grant relationship; trup = C0 /ε& m m. It is found for the AX52 die-cast alloy that the exponent m is unity and the constant C0 is 2.0 x 10-2, independent of creep testing temperature. The values of m and C0 are compared with those for another die-cast magnesium alloys. The value m=1 is generally detected for die-cast magnesium alloys. On the contrary, the value of C0 sensitively depends on alloy composition, which is reduced with increasing the concentration of alloying elements such as Al, Zn and Ca.


Sign in / Sign up

Export Citation Format

Share Document