Dynamic characteristics and research on the dual-drive feed mechanism

Author(s):  
Hong Lu ◽  
Qi Liu ◽  
Xinbao Zhang ◽  
Jingui Yu ◽  
Haoyu Dou ◽  
...  

The dual-drive feed mechanism (DDFM) based on the drive at the center of gravity (DCG) principle has been widely adopted in computer numerical control (CNC) machines and industrial robots that require high precision and high stability. The friction force affected by feed rates and moving parts positions can change the contact stiffness of kinematic joints, which can further impact on dynamic characteristics of the DDFM and cause dual axes difference. Considering the contact stiffness of kinematic joints, this paper adopts the lumped parameter method to establish the general dynamic model of the DDFM. The equivalent axial stiffness of kinematic joint and feed system transmission stiffness are all derived regarding the influence of feed rates and moving parts positions. The dynamic experiments on the DDFM with different feed rates and moving parts positions are carried out to verify the proposed model. The results suggest that in the motion stage, the DDFM’s natural frequency is greater than that in the static stage, and behaves differently in different feed rates and moving parts positions. The axial contact stiffness value of the ball-screw and nut B can reach 0 when the feed rate increases. When the moving parts are in the middle position of the crossbeam, the DDFM is the most stable and the dynamic performance is the best.

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 686 ◽  
Author(s):  
Meng Duan ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
Yongquan Zhang ◽  
Zhangjie Li ◽  
...  

It is of great significance to study the dynamic characteristics of twin ball screw (TBS) feed system to improve the precision of gantry-type dual-driven computer numerical control (CNC) machine tools. In this paper, an equivalent dynamic model of the TBS feed system is established utilizing lumped mass method considering the stiffness of joints. Equivalent axial stiffness of screw-nut joints and bearing joints are both calculated by Hertz contact theory. Furthermore, a friction model is proposed because the friction force of the screw nut affects the stiffness of the joints. Then, the friction parameters are obtained by using the nonlinear system identification method. Meanwhile, a finite element model (FEM) is developed to assess the dynamic characteristics of TBS feed system under the stiffness of joints. Finally, validation experiments are conducted, and the results show that the positions of the nut and the velocities of worktable greatly affect the dynamic characteristics of the TBS feed system. Compared with the theoretical calculation, FEM and experiments indicate that the dynamic modeling proposed in this article can reach a higher accuracy.


2010 ◽  
Vol 97-101 ◽  
pp. 2914-2920 ◽  
Author(s):  
Qin Wu ◽  
Zhi Yuan Rui ◽  
Jian Jun Yang

The computer numerical control (CNC) machine tool was investigated and the dynamics model for the servo feed system was established. Based on the fixing constraint of the ball screw, the mathematical models of axial stiffness and torsion stiffness are constructed. According to the effects of stiffness on the dynamic performance, the simulation model for CNC machine tool feed system with stiffness considered was set up by the dynamic simulation tool Simulink, and a curve representing the performance of the system was obtained. To reduce the effect of stiffness on the system, the feedforward control strategy is used for stiffness compensation. The simulation results show that the stability and response performances of the system are improved and the steady-state error of the system is reduced by the control strategy.


2019 ◽  
Vol 43 (3) ◽  
pp. 344-365 ◽  
Author(s):  
Ye Chen ◽  
Chun-yu Zhao ◽  
Si-yu Zhang ◽  
Xian-li Meng

This paper aims to investigate the load distribution and contact stiffness characteristics of the single-nut ball screw pair (SNBSP). First, the transformed relationship of coordinate systems is established. Then, the whole rolling elements load distribution model of the SNBSP is presented. Based on this, the whole rolling elements contact stiffness model is obtained. Applying the Newton–Raphson iterative method to solve the model, the normal force of rolling elements and the contact angles between balls and raceway surface are determined. The calculation results are reasonably consistent with those of the half pitch model. Then, the local contact stiffness and global contact stiffness are obtained. Furthermore, the effects of axial load and structural parameters of the SNBSP on the normal contact force, contact angle, and local and global contact stiffness are discussed using numeric analysis. Finally, a dynamic model of the z-axis feed system with time-varying axial stiffness is established, and the accuracy of the model is verified by experiments.


Author(s):  
Zaiwu Mei ◽  
Liping Chen ◽  
Jianwan Ding

An accurate dynamic model for the computer numerical control machine tool feed system is of great significance to improve the machining accuracy. However, the accurate dynamic model of the feed system is difficult to be established because its dynamic characteristics not only depend on the performance of subsystems, such as mechanical, electrical, and control, but also on the interaction between them. In order to solve this problem, a modular modeling method based on a non-causal connection is proposed in this article, and the multi-domain seamless integrated model for the ball screw feed system is established. First, the feed system is decomposed by modularization, and the interface models in each domain are defined. Then all the subsystems are modeled strictly, and the nonlinear characteristics of each subsystem are analyzed. Finally, the multi-domain seamless integrated model of the ball screw feed system is established by the non-causal connection of subsystem models, and the experiment is carried out to validate the system model. The experimental results show that the multi-domain seamless integrated model of the ball screw feed system established in this article can accurately reflect the dynamic characteristics of the real physical system, and has high prediction accuracy for the dynamic following error. It is of great significance to further study the multi-domain coupling characteristics and compensation control methods of the machine tool system.


2020 ◽  
Vol 150 ◽  
pp. 103890
Author(s):  
Mengtao Xu ◽  
Bing Cai ◽  
Changyou Li ◽  
Hongzhuang Zhang ◽  
Zhendong Liu ◽  
...  

2020 ◽  
Vol 10 (17) ◽  
pp. 5795
Author(s):  
Ye Chen ◽  
Chunyu Zhao ◽  
Zhenjun Li ◽  
Zechen Lu

The purpose of this paper is investigating the characteristics of dynamic contact and dynamic stiffness of the single nut ball screw pair (SNBSP). Then a new sensorless method is proposed to extract the SNBSP dynamic contact stiffness of a mass production CNC machine tool feed system. First of all, the transformation relationship between each coordinate system of SNBSP is established. Secondly, the dynamic model of all ball–raceway contact pairs is established. Based on this, a dynamic contact stiffness model is established. The dynamic contact parameters are obtained by the numerical method. It is found that the influence of screw speed on screw and nut raceway normal force distribution are opposite. This will affect the variations of dynamic contact stiffness. It is also clear that the effect of axial load on dynamic stiffness is significant. Then, an effective method is proposed to estimate the dynamic contact stiffness of a mass production CNC machine tool feed system without any external sensors. The axial force of feed system is estimated by using torque current of servo motor. Current signals can be obtained through FANUC Open CNC API Specifications (FOCAS) library functions, and then dynamic contact stiffness can be calculated through the stiffness model without external sensors. Finally, a feed system dynamic model is built, and the contact model and sensorless stiffness estimating method are verified by experiments in this dynamic system.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ruijun Liang ◽  
Wenlong Hao ◽  
Wenfeng Ran ◽  
Wenhua Ye

A mathematical model of the creeping phenomenon based on the mechanical model of the linear feed system was established. The dynamic characteristic parameters of each fixed joint were obtained by Yoshimura’s integral. Using the method, only the dynamic characteristic parameters of the joint surface per unit area with simple structure need to be studied, and then, the dynamic characteristic parameters of the whole joint surface can be obtained by integration. Based on the principle of the half-power bandwidth method and the frequency response function identification, the dynamic parameters of each moving joint were solved by the method of experimental modal analysis. Through the parameters of the fixed and moving joints, a rigid body model of the feed system and a flexible body model including the power transmission parts (ball screw pair) and the motion guide parts (guide slide pair and rolling bearing) were, respectively, established. And then, a rigid-flexible coupling dynamic model of the feed system was obtained through the constraint relationships between joints. The influence of both the external load and the feed rate on the fluctuation of motion speed of the system was analyzed from this model. The difference between the experimental results and the simulation results on a feed system platform is not greater than 10%, which verifies the creeping phenomenon. This conclusion can provide a basis for the optimization of the dynamic performance of the ball screw linear-feeding workbench.


2011 ◽  
Vol 10 (01) ◽  
pp. 77-84 ◽  
Author(s):  
BAOSHENG WANG ◽  
JIANMIN ZUO ◽  
MULAN WANG

Based on the elastic mechanics theory, the mathematical models of axial stiffness and torsion stiffness are constructed in accordance with single end thrust and two ends thrust. The effects of stiffness on dead band error are analyzed. With the analysis of displacement deviation induced by axial stiffness and angular displacement deflection caused by torsion stiffness, a formula to calculate the dead band error is presented. A model for Computer Numerical Control (CNC) machine tool feed system with stiffness is established. By applying computer simulation, dynamic performances, static performances and steady-state error of the system are analyzed. To reduce the effect of stiffness on the system, the feedforward control method is used to compensate stiffness. The simulation analysis shows the result that dynamic and static performances are improved, as well as steady-state error of the system is reduced by more than 58% with this approach.


2011 ◽  
Vol 308-310 ◽  
pp. 579-583
Author(s):  
Jian Wen Chen ◽  
Lei Li ◽  
Jin Chun Song ◽  
Zhan Jun He

In CNC machine tools servo feed system, there are many uncertain parameters, it is difficult to establish accurate mathematical model of the Servo feed system. The parameters of conventional PID controller can’t adjust immediately to the controlled object. Fuzzy PID controller [1], which has the advantages of conventional PID control and fuzzy control, can solve these problems. We apply it in numerical control machine servo feed system. The simulation in MATLAB shows that the fuzzy auto-tuning PID controller improve the dynamic performance of the servo feed system and has better robustness.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Zhe Du ◽  
Xiao-Lan Zhang ◽  
Tao Tao

The dynamic character of ball screw is the key factor that influences the machining accuracy of numerical control (NC) machine tool. To improve the dynamic characteristics of the NC machine tool, it is necessary to study the dynamic characteristics of a ball screw. In this paper, the kinematics of a ball screw mechanism (BSM) are studied to expound the dynamic process of the drive, and the load disturbance is considered to analyze the contact deformation based on the Hertzian contact theory. The velocity relationships among the ball, screw, and nut are analyzed, and the influence of the contact deformation on the dynamic characteristics is simulated and investigated experimentally. The results show that the relationships between the contact deformation, which is affected by the material characteristics, the contact angle, and the load of nut are nonlinear. The contact deformation is a factor that cannot be ignored when considering the dynamic machining error of high-speed and high-precision machine tools.


Sign in / Sign up

Export Citation Format

Share Document