Fault detection in water pumps based on sound analysis using a deep learning technique

Author(s):  
Minh T Nguyen ◽  
Jin H Huang

Machine fault detection is designed to automatically detect faults or damage in machines. When a machine operates, it produces vibrations and sound signals that can be analyzed to provide information about the status of the machine. This study proposed a method to detect the faults in a machine based on sound analysis using a deep learning technique. The sound signals generated by the machine were obtained and analyzed under different operating conditions. These signals were first pre-processed to eliminate noise, and then the features were extracted as mel-spectrograms so that the convolutional neural network could automatically learn the appropriate features required for classification. Experiments were conducted on three different water pumps during suction from and discharge to the water tank under normal and abnormal operating conditions. The high accuracies in fault detections in both known and unknown machines indicated that the proposed model performed very well in the detection of machine faults.

2020 ◽  
Author(s):  
varan singhrohila ◽  
Nitin Gupta ◽  
Amit Kaul ◽  
Deepak Sharma

<div>The ongoing pandemic of COVID-19 has shown</div><div>the limitations of our current medical institutions. There</div><div>is a need for research in the field of automated diagnosis</div><div>for speeding up the process while maintaining accuracy</div><div>and reducing computational requirements. In this work, an</div><div>automatic diagnosis of COVID-19 infection from CT scans</div><div>of the patients using Deep Learning technique is proposed.</div><div>The proposed model, ReCOV-101 uses full chest CT scans to</div><div>detect varying degrees of COVID-19 infection, and requires</div><div>less computational power. Moreover, in order to improve</div><div>the detection accuracy the CT-scans were preprocessed by</div><div>employing segmentation and interpolation. The proposed</div><div>scheme is based on the residual network, taking advantage</div><div>of skip connection, allowing the model to go deeper.</div><div>Moreover, the model was trained on a single enterpriselevel</div><div>GPU such that it can easily be provided on the edge of</div><div>the network, reducing communication with the cloud often</div><div>required for processing the data. The objective of this work</div><div>is to demonstrate a less hardware-intensive approach for COVID-19 detection with excellent performance that can</div><div>be combined with medical equipment and help ease the</div><div>examination procedure. Moreover, with the proposed model</div><div>an accuracy of 94.9% was achieved.</div>


The most serious threats to the current mobile internet are Android Malware. In this paper, we proposed a static analysis model that does not need to understand the source code of the android applications. The main idea is as most of the malware variants are created using automatic tools. Also, there are special fingerprint features for each malware family. According to decompiling the android APK, we mapped the Opcodes, sensitive API packages, and high-level risky API functions into three channels of an RGB image respectively. Then we used the deep learning technique convolutional neural network to identify Android application as benign or as malware. Finally, the proposed model succeeds to detect the entire 200 android applications (100 benign applications and 100 malware applications) with an accuracy of over 99% as shown in experimental results.


2020 ◽  
Author(s):  
varan singhrohila ◽  
Nitin Gupta ◽  
Amit Kaul ◽  
Deepak Sharma

<div>The ongoing pandemic of COVID-19 has shown</div><div>the limitations of our current medical institutions. There</div><div>is a need for research in the field of automated diagnosis</div><div>for speeding up the process while maintaining accuracy</div><div>and reducing computational requirements. In this work, an</div><div>automatic diagnosis of COVID-19 infection from CT scans</div><div>of the patients using Deep Learning technique is proposed.</div><div>The proposed model, ReCOV-101 uses full chest CT scans to</div><div>detect varying degrees of COVID-19 infection, and requires</div><div>less computational power. Moreover, in order to improve</div><div>the detection accuracy the CT-scans were preprocessed by</div><div>employing segmentation and interpolation. The proposed</div><div>scheme is based on the residual network, taking advantage</div><div>of skip connection, allowing the model to go deeper.</div><div>Moreover, the model was trained on a single enterpriselevel</div><div>GPU such that it can easily be provided on the edge of</div><div>the network, reducing communication with the cloud often</div><div>required for processing the data. The objective of this work</div><div>is to demonstrate a less hardware-intensive approach for COVID-19 detection with excellent performance that can</div><div>be combined with medical equipment and help ease the</div><div>examination procedure. Moreover, with the proposed model</div><div>an accuracy of 94.9% was achieved.</div>


2021 ◽  
Author(s):  
E. Karthik ◽  
T Sethukarasi

Abstract Sentiment analysis uses different tools and techniques to extract informative data such as users' opinions or emotions from their textual feedback. The state-of-art sentiment analysis techniques offered lower performance due to the inability to handle both small and larger datasets. To overcome this problem this paper presents a deep learning technique known as Centered Convolutional Restricted Boltzmann Machines (CCRBM) for user behavioral sentimental analysis. However, this deep learning model's performance solely depends upon the parameter selection process. To overcome this problem and increase the classification accuracy a Hybrid Atom Search Arithmetic Optimization (HASAO) algorithm is used in this paper to select the parameters of the CCRBM architecture and offer optimal performance. The initial population quality and exploitation capacity of the Atom Search Optimization (ASO) algorithm is enhanced by hybridizing it with the Arithmetic Optimization(AO) algorithm. To investigate the effectiveness of the proposed HASAO optimized CCRBM architecture it is evaluated using four different datasets namely Reddit, Twitter, IMDB movie review, and Yelp dataset. The performance of the proposed model is analyzed by comparing it with four baseline models and the accuracy value above 90% for the four datasets proves the efficiency of the proposed technique.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Syed Abdul Basit Andrabi ◽  
Abdul Wahid

Machine translation is an ongoing field of research from the last decades. The main aim of machine translation is to remove the language barrier. Earlier research in this field started with the direct word-to-word replacement of source language by the target language. Later on, with the advancement in computer and communication technology, there was a paradigm shift to data-driven models like statistical and neural machine translation approaches. In this paper, we have used a neural network-based deep learning technique for English to Urdu languages. Parallel corpus sizes of around 30923 sentences are used. The corpus contains sentences from English-Urdu parallel corpus, news, and sentences which are frequently used in day-to-day life. The corpus contains 542810 English tokens and 540924 Urdu tokens, and the proposed system is trained and tested using 70 : 30 criteria. In order to evaluate the efficiency of the proposed system, several automatic evaluation metrics are used, and the model output is also compared with the output from Google Translator. The proposed model has an average BLEU score of 45.83.


2021 ◽  
Vol 17 (2) ◽  
pp. 71-85
Author(s):  
Hassan Abdelrhman Mohammed ◽  
Eltahir Mohmmed Hussein ◽  
Mahir Mohammed Sharif

This work  aims to design and develop a model that detects and classifies pregnancy health status. Ultrasound is one of the most prevalent developments in clinical imaging, as it enables a doctor to evaluate, analyze and treat diseases. Most complications from pregnancy lead to serious problems that restrict healthy growth, causing weakness or death. In this work, an image processing system was developed to recognize the  health during pregnancy and classify it for all stages of its development. The technique in deep learning has been implemented, as CNN (Resnet50) image recognition model was applied to detect and classify fetal health status from ultrasound images. The proposed model contributed to providing an integrated solution for each pregnancy period that works to identify all stages of fetal development, starting from the pre-pregnancy stage (here it is known about the suitability of the uterus for pregnancy, the size of the ovum, and its ability to form the fetus) and up to the stage of birth, through training, verification and testing using the cross-verification technique that five folds of the diagnostic rudder were used under the patterns that distinguish each stage from the other and to verify that it is sound or unsound in the concerning stage. This study enhanced diagnostic accuracy by using transfer learning and novel accessory images that were not trained as feedback. The model achieved an accuracy of 96.5% in detecting the fetus and classifying it into any of the stages that were divided according to the features that appear from one stage to the next to eleven categories.  


2020 ◽  
Vol 14 (10) ◽  
pp. 953-961
Author(s):  
Stéfano Frizzo Stefenon ◽  
Roberto Zanetti Freire ◽  
Luiz Henrique Meyer ◽  
Marcelo Picolotto Corso ◽  
Andreza Sartori ◽  
...  

Author(s):  
Larysa Bodnar ◽  
Petro Koval ◽  
Sergii Stepanov ◽  
Liudmyla Panibratets

A significant part of Ukrainian bridges on public roads is operated for more than 30 years (94 %). At the same time, the traffic volume and the weight of vehicles has increased significantly. Insufficient level of bridges maintenance funding leads to the deterioration of their technical state. The ways to ensure reliable and safe operation of bridges are considered. The procedure for determining the predicted operational status of the elements and the bridge in general, which has a scientific novelty, is proposed. In the software complex, Analytical Expert Bridges Management System (AESUM), is a function that allows tracking the changes in the operational status of bridges both in Ukraine and in each region separately. The given algorithm of the procedure for determining the predicted state of the bridge using a degradation model is described using the Nassie-Schneidermann diagram. The model of the degradation of the bridge performance which is adopted in Ukraine as a normative one, and the algorithm for its adaptation to the AESUM program complex with the function to ensure the probabilistic predicted operating condition of the bridges in the automatic mode is presented. This makes it possible, even in case of unsatisfactory performance of surveys, to have the predicted lifetime of bridges at the required time. For each bridge element it is possible to determine the residual time of operation that will allow predict the state of the elements of the structure for a certain period of time in the future. Significant interest for specialists calls for the approaches to the development of orientated perspective plans for bridge inspection and monitoring of changes in the operational status of bridges for 2009-2018 in Ukraine. For the analysis of the state of the bridge economy, the information is available on the distribution of bridges by operating state related to the administrative significance of roads, by road categories and by materials of the structures. Determining the operating state of the bridge is an important condition for making the qualified decisions as regards its maintenance. The Analytical Expert Bridges Management System (AESUM) which is implemented in Ukraine, stores the data on the monitoring the status of bridges and performs the necessary procedures to maintain them in a reliable and safe operating condition. An important result of the work is the ability to determine the distribution of bridges on the public roads of Ukraine, according to operating conditions established in the program complex of AESUM, which is presented in accordance with the data of the current year. In conditions of limited funding and in case of unsatisfactory performance of surveys, it is possible to make the reasonable management decisions regarding the repair and the reconstruction of bridges. Keywords: bridge management system, operating condition, predicted operating condition, model of degradation, bridge survey plan, highway bridge.


Sign in / Sign up

Export Citation Format

Share Document