A novel abnormal detection method for bearing temperature based on spatiotemporal fusion

Author(s):  
Yong Zhi Liu ◽  
Yi Sheng Zou ◽  
Yu Wu ◽  
Hao Yang Zhang ◽  
Guo Fu Ding

The existing bearing temperature fault detection and early warning system has a high false alarm rate and insufficient early warning ability. For this reason, in this study, a method for detecting the abnormal bearing temperature of high-speed trains based on spatiotemporal fusion decision-making was proposed. First, the temperature characteristics of similar bearings were compared and analyzed with different spatial distributions. Then, a bearing abnormal temperature rise detection model based on the analytic hierarchy process (AHP) entropy method was proposed. Second, the temperature characteristics of the same bearings were compared and analyzed with different time distributions. A real-time prediction model of high-speed train bearing temperature anomalies based on Bi-directional Long Short-Term Memory (BILSTM) was proposed. Finally, the D-S evidence theory was used to combine the anomaly detection model based on the AHP entropy method and the anomaly detection model based on BILSTM real-time prediction. Through the comprehensive diagnosis and decision-making of high-speed train bearings from two dimensions of space and time, a more comprehensive and accurate anomaly detection model was realized. The experimental results showed that the spatiotemporal comparison fusion decision model successfully eliminated the misjudgment phenomenon of single-dimension model diagnosis and that it has good early warning ability.

2020 ◽  
Vol 10 (23) ◽  
pp. 8625
Author(s):  
Yali Song ◽  
Yinghong Wen

In the positioning process of a high-speed train, cumulative error may result in a reduction in the positioning accuracy. The assisted positioning technology based on kilometer posts can be used as an effective method to correct the cumulative error. However, the traditional detection method of kilometer posts is time-consuming and complex, which greatly affects the correction efficiency. Therefore, in this paper, a kilometer post detection model based on deep learning is proposed. Firstly, the Deep Convolutional Generative Adversarial Networks (DCGAN) algorithm is introduced to construct an effective kilometer post data set. This greatly reduces the cost of real data acquisition and provides a prerequisite for the construction of the detection model. Then, by using the existing optimization as a reference and further simplifying the design of the Single Shot multibox Detector (SSD) model according to the specific application scenario of this paper, the kilometer post detection model based on an improved SSD algorithm is established. Finally, from the analysis of the experimental results, we know that the detection model established in this paper ensures both detection accuracy and efficiency. The accuracy of our model reached 98.92%, while the detection time was only 35.43 ms. Thus, our model realizes the rapid and accurate detection of kilometer posts and improves the assisted positioning technology based on kilometer posts by optimizing the detection method.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4237
Author(s):  
Hoon Ko ◽  
Kwangcheol Rim ◽  
Isabel Praça

The biggest problem with conventional anomaly signal detection using features was that it was difficult to use it in real time and it requires processing of network signals. Furthermore, analyzing network signals in real-time required vast amounts of processing for each signal, as each protocol contained various pieces of information. This paper suggests anomaly detection by analyzing the relationship among each feature to the anomaly detection model. The model analyzes the anomaly of network signals based on anomaly feature detection. The selected feature for anomaly detection does not require constant network signal updates and real-time processing of these signals. When the selected features are found in the received signal, the signal is registered as a potential anomaly signal and is then steadily monitored until it is determined as either an anomaly or normal signal. In terms of the results, it determined the anomaly with 99.7% (0.997) accuracy in f(4)(S0) and in case f(4)(REJ) received 11,233 signals with a normal or 171anomaly judgment accuracy of 98.7% (0.987).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Yu ◽  
Chun Shan ◽  
Jilong Bian ◽  
Xianfei Yang ◽  
Ying Chen ◽  
...  

With the rapid development of Internet of Things (IoT), massive sensor data are being generated by the sensors deployed everywhere at an unprecedented rate. As the number of Internet of Things devices is estimated to grow to 25 billion by 2021, when facing the explicit or implicit anomalies in the real-time sensor data collected from Internet of Things devices, it is necessary to develop an effective and efficient anomaly detection method for IoT devices. Recent advances in the edge computing have significant impacts on the solution of anomaly detection in IoT. In this study, an adaptive graph updating model is first presented, based on which a novel anomaly detection method for edge computing environment is then proposed. At the cloud center, the unknown patterns are classified by a deep leaning model, based on the classification results, the feature graphs are updated periodically, and the classification results are constantly transmitted to each edge node where a cache is employed to keep the newly emerging anomalies or normal patterns temporarily until the edge node receives a newly updated feature graph. Finally, a series of comparison experiments are conducted to demonstrate the effectiveness of the proposed anomaly detection method for edge computing. And the results show that the proposed method can detect the anomalies in the real-time sensor data efficiently and accurately. More than that, the proposed method performs well when there exist newly emerging patterns, no matter they are anomalous or normal.


2020 ◽  
Vol 169 ◽  
pp. 107049 ◽  
Author(s):  
Ying Zhong ◽  
Wenqi Chen ◽  
Zhiliang Wang ◽  
Yifan Chen ◽  
Kai Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document