Stability boundary analysis of highly flexible aircraft with control saturation and structural flexibility

Author(s):  
Liang Xu ◽  
Yuping Lu ◽  
Boyi Chen ◽  
Haidong Shen ◽  
Zhen He

In this work, a method has been presented to analyze the influence of control saturation and structural flexibility on the stable radius of highly flexible aircraft. A dynamic model of aircraft is constructed followed by the analysis of kinetic characteristics. In this paper, the closed-loop stability boundary of highly flexible aircraft with open-loop instability is studied. The amplitude limit and bandwidth limit of the control signal are considered in the closed-loop stability boundary calculation. Our analysis shows that the boundary is related to the left eigenvector corresponding to the unstable poles and the amplitude constraint of the control signals. Stability of the boundary of feedback control system further reduces the limitation of the bandwidth of actuators. Focused on the phugoid instability of highly flexible aircraft, computational formulation of the closed-loop stable boundary is achieved. The Monte Carlo analysis has been employed to validate the stable region, under the LQR controller. Both the theory and simulations have nice correlations with each other which verify the stability of the closed-loop system, restricted by the open-loop system, and the influence of control signal bandwidth constraints.

Author(s):  
Amit Pandey ◽  
Maurício de Oliveira ◽  
Chad M. Holcomb

Several techniques have recently been proposed to identify open-loop system models from input-output data obtained while the plant is operating under closed-loop control. So called multi-stage identification techniques are particularly useful in industrial applications where obtaining input-output information in the absence of closed-loop control is often difficult. These open-loop system models can then be employed in the design of more sophisticated closed-loop controllers. This paper introduces a methodology to identify linear open-loop models of gas turbine engines using a multi-stage identification procedure. The procedure utilizes closed-loop data to identify a closed-loop sensitivity function in the first stage and extracts the open-loop plant model in the second stage. The closed-loop data can be obtained by any sufficiently informative experiment from a plant in operation or simulation. We present simulation results here. This is the logical process to follow since using experimentation is often prohibitively expensive and unpractical. Both identification stages use standard open-loop identification techniques. We then propose a series of techniques to validate the accuracy of the identified models against first principles simulations in both the time and frequency domains. Finally, the potential to use these models for control design is discussed.


1989 ◽  
Vol 111 (4) ◽  
pp. 592-599 ◽  
Author(s):  
T. L. Vincent ◽  
S. P. Joshi ◽  
Yeong Ching Lin

In this paper, we investigate an alternate approach to the design of controllers for positioning and damping of a system which can be reduced to an equivalent system of springs and masses. The approach taken is to design a controller which uses open-loop positioning followed by closed-loop control for damping. By so doing, we can avoid a conflicting requirements problem associated with traditional state variable feedback design. The open-loop portion of the control is based on optimal control theory, which allows for control saturation. In particular, during this phase of the control, the time to position is minimized. This results in a bang-bang type of control. Once the system has been “positioned,” the controller switches to a closed-loop phase. The particular closed-loop control used here is based on energy methods and is not a full state variable feedback design. The method is illustrated using a low-order spring-mass example, and the results are compared with an LQ design.


Author(s):  
Wayne Maxwell ◽  
Al Ferri ◽  
Bonnie Ferri

This paper extends the use of closed-loop anytime control to systems that are inherently unstable in the open-loop. Previous work has shown that anytime control is very effective in compensating for occasional missed deadlines in the computer processor. When misses occur, the control law is truncated or partially executed. However, the previous work assumed that the open-loop system was stable. In this paper, the anytime strategy is applied to an inverted pendulum system. An LQR controller with estimated state feedback is designed and decomposed into two stages. Both stages are implemented most of the time, but in a small percentage of time, only the first stage is applied, with the resulting closed-loop system being unstable for short periods of time. The statistical performance of the closed-loop system is studied using Monte-Carlo simulations. It is seen that, on average, the closed-loop performance is very close to that of the full-order controller as long as the miss rate is relatively small. However, the variance of the response shows much higher dependence on the miss rate, suggesting that the response becomes more unpredictable. At a critical value of miss rate, the closed-loop system is unstable. The critical miss rate found through simulation is seen to correlate well with the results of a deterministic stability analysis. The statistics on the settling time are also studied, and shown to grow longer as the miss rate increases. The transient behavior of the system is studied for a range of initial conditions.


1994 ◽  
Vol 116 (3) ◽  
pp. 429-436 ◽  
Author(s):  
A. W. Lee ◽  
J. K. Hedrick

This paper examines the performance enhancement of a statically unstable aircraft subject to the input and state constraints. Under control saturation, i/o linearizability is destroyed and the state trajectories may not be attracted to the sliding surface. If the reference signals are sufficiently large and the zero-dynamics is lightly damped, the i/o linearizing control may become unreasonably large in magnitude, making the closed-loop system susceptible to the damaging effects of control saturation. In addition to performance degradations such as increased tracking errors, control saturation can drive the closed-loop system to instability. In this paper, a new design method called approximate i/o linearization is presented to enhance the performance of the SISO longitudinal flight control problem under saturation. The new approximate i/o linearization law is obtained by solving a pointwise minimization problem. The function to be minimized consists of a surface whose relative degree is one, its derivative, and weighted square of the input u. The advantages of the approximate i/o linearization is that the adverse effects of control saturation can be minimized by properly selecting the weight on the usage of the control. The only requirement for the new technique is that the original plant be locally i/o linearizable. Thus approximate i/o linearization does not impose additional strict requirements on the plant. In the remaining sections of the paper, stability and bounded tracking properties of the approximate i/o linearization are proven. Finally, a longitudinal flight control problem is used to demonstrate the application of approximate i/o linearization.


1995 ◽  
Vol 117 (4) ◽  
pp. 484-489
Author(s):  
Jenq-Tzong H. Chan

A correlation equation is established between open-loop test data and the desired closed-loop system characteristics permitting control system synthesis to be done on the basis of a numerical approach using experimental data. The method is applicable when the system is linear-time-invariant and open-loop stable. The major merits of the algorithm are two-fold: 1) Arbitrary placement of the closed-loop system equation is possible, and 2) explicit knowledge of an open-loop system model is not needed for the controller synthesis.


Author(s):  
Z Ren ◽  
G G Zhu

This paper studies the closed-loop system identification (ID) error when a dynamic integral controller is used. Pseudo-random binary sequence (PRBS) q-Markov covariance equivalent realization (Cover) is used to identify the closed-loop model, and the open-loop model is obtained based upon the identified closed-loop model. Accurate open-loop models were obtained using PRBS q-Markov Cover system ID directly. For closed-loop system ID, accurate open-loop identified models were obtained with a proportional controller, but when a dynamic controller was used, low-frequency system ID error was found. This study suggests that extra caution is required when a dynamic integral controller is used for closed-loop system identification. The closed-loop identification framework also has significant effects on closed-loop identification error. Both first- and second-order examples are provided in this paper.


2002 ◽  
Vol 8 (6) ◽  
pp. 777-803 ◽  
Author(s):  
Y. Liu ◽  
K. W. Wang

In this paper, the Enhanced Active Constrained Layer (EACL) treatment is investigated for broadband damping augmentations on beam structures. The EACL concept was originally proposed to improve the damping performance of the Active Constrained Layer (ACL) by introducing edge elements at the treatment boundaries. It has been recognized that the edge elements can increase ACL performance by enhancing the direct active authority of the piezoelectric constraining layer. It has also been demonstrated that the edge element stiffness and the host structure strain field have significant influence on the overall closed-loop system damping and its various components: the active damping, the closed-loop passive damping, and the open-loop passive (fail-safe property - without any active action) damping. Through utilizing this finding, the present study explores how the EACL performance can be synthesized for multiple mode broadband applications using symmetric configurations. Although the edge elements will tend to reduce the maximum possible open-loop damping of one (or a few) vibration mode, open-loop damping of the other higher order modes could actually be increased. Moreover, the modal damping reduction in the open-loop system can generally be compensated by the significant increase of the closed-loop damping. In other words, the closed-loop EACL system damping over a wide frequency range can be significant, which makes it attractive for broadband vibration and noise suppression.


2013 ◽  
Vol 336-338 ◽  
pp. 940-943
Author(s):  
Long Wang ◽  
Chun Hua He ◽  
Yu Xian Liu ◽  
Da Chuan Liu ◽  
Long Tao Lin ◽  
...  

This paper presents one kind of digital closed loop control system of MEMS (Micro Electro-Mechanical Systems) vibratory gyroscope, particularly concentrating on the sense mode of MEMS gyroscope. The controller consists of a sine wave source realized by CORDIC algorithm, multiplication demodulators, some low-pass filters and force feedback rebalance module. Compared with the open loop sense system of gyroscope, the closed loop sense system has larger measurement range and wider bandwidth. Besides, the sine wave source realized with CORDIC algorithm can save hardware resources. The digital system is demonstrated on a PCB with a FPGA on it. The test results show that the measurement range of the closed loop system can be increased to 3 times by the open loop, and the bandwidth can be extended to 262Hz from 27Hz of the open loop system.


Sign in / Sign up

Export Citation Format

Share Document