Experimental investigation on the structures and induced drag of wingtip vortices for different wingtip configurations

Author(s):  
Ze-Peng Cheng ◽  
Yang Xiang ◽  
Hong Liu

As an effective method to reduce induced drag and the risk of wake encounter, the winglet has been an essential device and developed into diverse configurations. However, the structures and induced drag, as well as wandering features of the wingtip vortices ( WTVs) generated by these diverse winglet configurations are not well understood. Thus, the WTVs generated by four typical wingtip configurations, namely the rectangular wing with blended/raked/split winglet and without winglet (Model BL/ RA/ SP/NO for short), are investigated in this paper using particle image velocimetry technology. Comparing with an isolated primary wingtip vortex generated by Model NO, multiple vortices are twisted coherently after installing the winglets. In addition, the circulation evolution of WTVs demonstrates that the circulation for Model SP is the largest, while Model RA is the smallest. By tracking the instantaneous vortex center, the vortex wandering behavior is observed. The growth rate of wandering amplitude along with the streamwise location from the quickest to the slowest corresponds to Model SP, Model NO, Model BL, Model RA in sequence, implying that the WTVs generated by model SP exhibit the quickest mitigation. Considering that the induced drag scales as the lift to power 2, the induced drag and lift are estimated based on the wake integration method, and then the form factor λ, defined by [Formula: see text], is calculated to evaluate the aerodynamic performance. Comparing with the result of Model NO, the form factor decreases by 7.99%, 4.80%, and 2.60% for Model RA, Model BL, Model SP, respectively. In sum, Model RA and BL have a smaller induced drag coefficient but decay slower; while Model SP has a larger induced drag coefficient but decays quicker. An important implication of these results is that reducing the strength of WTVs and increasing the growth rate of vortex wandering amplitude can be the mutual requirements for designing new winglets.

2017 ◽  
Vol 14 (130) ◽  
pp. 20170099 ◽  
Author(s):  
Marco KleinHeerenbrink ◽  
L. Christoffer Johansson ◽  
Anders Hedenström

Slotted wing tips of birds are commonly considered an adaptation to improve soaring performance, despite their presence in species that neither soar nor glide. We used particle image velocimetry to measure the airflow around the slotted wing tip of a jackdaw ( Corvus monedula ) as well as in its wake during unrestrained flight in a wind tunnel. The separated primary feathers produce individual wakes, confirming a multi-slotted function, in both gliding and flapping flight. The resulting multi-cored wingtip vortex represents a spreading of vorticity, which has previously been suggested as indicative of increased aerodynamic efficiency. Considering benefits of the slotted wing tips that are specific to flapping flight combined with the wide phylogenetic occurrence of this configuration, we propose the hypothesis that slotted wings evolved initially to improve performance in powered flight.


Author(s):  
Nelson Tonui ◽  
David Sumner

The flow around a square prism impulsively set into motion was studied experimentally using particle image velocimetry (PIV). The experiments were conducted in an X-Y towing tank for Reynolds numbers from Re = 200 to 1000 and dimensionless acceleration parameters from a* = 0.5 to 10. The temporal development of the near-wake recirculation zone, and its pair of primary eddies, was examined from the initial start until the wake became asymmetric. When considering the time elapsed from the start of motion, the temporal development of the wake was sensitive the initial acceleration. “Impulsively started” conditions were effectively attained for a* ≥ 3. However, when considering the distance traveled from the start of motion, the wake parameters were sensibly independent of a* for a* ≥ 0.5. Concerning the temporal development of the recirculation zone, the length of the recirculation zone, the streamwise location of the primary eddies, and the strength of the primary eddies increased with time following the impulsive start, while the cross-stream spacing of the eddy centres remained nearly constant. The recirculation zone of the square prism was longer than that of the impulsively started circular cylinder but shorter than an impulsively started flat plate. For t* > 2, the primary eddy strength, maximum vorticity, and cross-stream spacing of the primary eddies were the same for both the square prism and circular cylinder.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Yaşar Ostovan ◽  
M. Tuğrul Akpolat ◽  
Oğuz Uzol

This study presents an experimental investigation on the effects of winglets on the near wake flow around the tip region and on the tip vortex characteristics downstream of a 0.94 m diameter three-bladed horizontal axis wind turbine (HAWT) rotor. Phase-locked 2D particle image velocimetry (PIV) measurements are performed with and without winglets covering 120 deg of azimuthal progression of the rotor. The impact of using winglets on the flow field near the wake boundary as well as on the tip vortex characteristics such as the vortex convection, vortex core size, and core expansion as well as the resultant induced drag on the rotor are investigated. Results show that winglets initially generate an asymmetric co-rotating vortex pair, which eventually merge together after about ten tip chords downstream to create a single but nonuniform vortex structure. Mutual induction of the initial double vortex structure causes a faster downstream convection and a radially outward motion of tip vortices compared to the baseline case. The wake boundary is shifted radially outward, velocity gradients are diffused, and vorticity and turbulent kinetic energy levels are significantly reduced across the wake boundary. The tip vortex core sizes are three times as big compared to those of the baseline case, and within the vortex core, vorticity and turbulent kinetic energy levels are reduced more than 50%. Results show consistency with various vortex core and expansion models albeit with adjusted model coefficients for the winglet case. The estimated induced drag reduction is about 15% when winglets are implemented.


Sign in / Sign up

Export Citation Format

Share Document