Human Factor Data in Nuclear Power Plant Applications

1980 ◽  
Vol 24 (1) ◽  
pp. 123-123
Author(s):  
Linda O. Hecht

Due to the concern for safety the nuclear power industry in the United States has fostered the use of reliability analysis to assess system performance and the impact of system failure on overall plant safety. The need for system and component failure rate data has been recognized and has spurred such efforts as NPRDS (Nuclear Power Research Data System) and IEEE's Std 500 (The Reliability Data Manual). Reliability modeling techniques have been developed for application to nuclear systems and are presently being considered by the Nuclear Regulatory Commission for licensing purposes.

2013 ◽  
Vol 284-287 ◽  
pp. 1151-1155
Author(s):  
Che Hao Chen ◽  
Jong Rong Wang ◽  
Hao Tzu Lin ◽  
Chun Kuan Shih

The objective of this study is to utilize TRACE (TRAC/RELAP Advanced Computational Engine) code to analyze the reactor coolant system (RCS) pressure transients under ATWS (Anticipated Transient Without Scram) for Maanshan PWR (Pressurized Water Reactor) in various MTC (Moderator Temperature Coefficient) conditions. TRACE is an advanced thermal hydraulic code for nuclear power plant safety analysis, which is currently under development by the United States Nuclear Regulatory Commission (USNRC). A graphic user interface program named SNAP (Symbolic Nuclear Analysis Package), which processes inputs and outputs for TRACE is also under development. Maanshan nuclear power plant (NPP) is the only Westinghouse PWR in Taiwan. The rated core thermal power of Maanshan with MUR (Measurement Uncertainty Recapture) is 2822 MWt. In document SECY-83-293, all initializing events were classified as either turbine trip or non-turbine trip events and their ATWS risks were also evaluated according to these two events. Loss of condenser vacuum (LOCV) and Loss of normal feedwater (LONF) ATWS were identified as limiting transients of turbine trip and non-turbine trip events in this study. According to ASME Code Level C service limit criteria, the RCS pressure for Maanshan NPP must be under 22.06 MPa. Furthermore, we select the LOCV transient to analyze various MTC effects on RCS pressure variations.


Author(s):  
Mansoor H. Sanwarwalla

Since the United States Nuclear Regulatory Commission (USNRC) published its landmark “Reactor Safety Study — An Assessment of Accident Risks in U. S. Commercial Nuclear Power Plants” in late 1975, commercial nuclear power industry, encouraged by the USNRC, have since then been applying Probabilistic Risk Assessment (PRAs) in their nuclear power units in areas of in-service testing, in-service inspection, quality assurance, technical specifications, maintenance, etc. To guide and regulate the industry in use of PRAs, Regulatory Guides and Standards have been written and are being revised continuously by the USNRC, American Society of Mechanical Engineers (ASME) and American Nuclear Society (ANS). The current use of PRA takes credit for single failure criterion based on applicability of codes and standards. The proposed new USNRC regulation 10 CFR Part 53 applicable for all reactor technologies is silent on the applicability of current standards endorsed by the regulatory body. The impact of the proposed new rule to both new and the current application needs to be studied. This paper will review the application of the various guidance documents for their use in commercial nuclear power plants with emphasis on the new generation nuclear power plants.


Author(s):  
Ronald C. Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed and approved, including the “traditional” reactor designs, the passive safe shutdown designs and the small modular reactors (SMRs). The American Society of Mechanical Engineers (ASME) provides specific Codes used to perform preservice inspection/testing and inservice inspection/testing for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for Design Certifications and Combined Licenses (COLs) under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” in Title 10 of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or following January 1, 2000. The New Reactors OM Code (NROMC) Task Group (TG) of the ASME Code for Operation and Maintenance of Nuclear Power Plants (NROMC TG) is assigned the task of ensuring that the preservice testing (PST) and IST provisions in the ASME OM Code to address pumps, valves, and dynamic restraints (snubbers) in post-2000 nuclear power plants are adequate to provide reasonable assurance that the components will operate as needed when called upon. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in non-safety systems in passive post-2000 reactors including SMRs.


Author(s):  
Eugene Imbro ◽  
Thomas G. Scarbrough

The U.S. Nuclear Regulatory Commission (NRC) has established an initiative to risk-inform the requirements in Title 10 of the Code of Federal Regulations (10 CFR) for the regulatory treatment of structures, systems, and components (SSCs) used in commercial nuclear power plants. As discussed in several Commission papers (e.g., SECY-99-256 and SECY-00-0194), Option 2 of this initiative involves categorizing plant SSCs based on their safety significance, and specifying treatment that would provide an appropriate level of confidence in the capability of those SSCs to perform their design functions in accordance with their risk categorization. The NRC has initiated a rulemaking effort to allow licensees of nuclear power plants in the United States to implement the Option 2 approach in lieu of the “special treatment requirements” of the NRC regulations. In a proof-of-concept effort, the NRC recently granted exemptions from the special treatment requirements for safety-related SSCs categorized as having low risk significance by the licensee of the South Texas Project (STP) Units 1 and 2 nuclear power plant, based on a review of the licensee’s high-level objectives of the planned treatment for safety-related and high-risk nonsafety-related SSCs. This paper discusses the NRC staff’s views regarding the treatment of SSCs at STP described by the licensee in its updated Final Safety Analysis Report (FSAR) in support of the exemption request, and provides the status of rulemaking that would incorporate risk insights into the treatment of SSCs at nuclear power plants.


Author(s):  
David Alley

This paper provides a historical perspective on the need for, and development of, buried and underground piping tanks programs at nuclear power plants. Nuclear power plant license renewal activities, Nuclear Regulatory Commission Buried Piping Action Plan, and the rationale for addressing the issue of buried pipe through an industry initiative as opposed to regulation are discussed. The paper also addresses current NRC activities including the results of Nuclear Regulatory Commission inspections of buried piping programs at nuclear power plants as well as Nuclear Regulatory Commission involvement in industry and standards development organizations. Finally, the paper outlines the Nuclear Regulatory Commission’s future plans concerning the issue of buried piping at US nuclear power plants.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Stephen A. Hambric ◽  
Samir Ziada ◽  
Richard J. Morante

The United States Nuclear Regulatory Commission (USNRC) has approved several extended power uprates (EPU) for Boiling Water Reactors (BWRs). In some of the BWRs, operating at the higher EPU power levels and flow rates led to high-cycle fatigue damage of Steam Dryers, including the generation of loose parts. Since those failures occurred, all BWR owners proposing EPUs have been required by the USNRC to ensure that the steam dryers would not experience high-cycle fatigue cracking. This paper provides an overview of BWR steam dryer design; the fatigue failures that occurred at the Quad Cities (QC) nuclear power plants and their root causes; a brief history of BWR EPUs; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluation methods (static and alternating stress).


Author(s):  
Tao Zhang ◽  
Frederick W. Brust ◽  
Gery Wilkowski ◽  
Heqin Xu ◽  
Alfredo A. Betervide ◽  
...  

The Atucha II nuclear power plant is a unique pressurized heavy water reactor (PHWR) being constructed in Argentina. The original plant design was by Kraftwerk Union (KWU) in the 1970’s using the German methodology of break preclusion. The plant construction was halted for several decades, but a recent need for power was the driver for restarting the construction. The US NRC developed leak-before-break (LBB) procedures in draft Standard Review Plan (SRP) 3.6.3 for the purpose of eliminating the need to design for dynamic effects that allowed the elimination of pipe whip restraints and jet impingement shields. This SRP was originally written in 1987 with a modest revision in 2005. The United States Nuclear Regulatory Commission (US NRC) is currently developing a draft Regulatory Guide on what is called the Transition Break Size (TBS). However, modeling crack pipe response in large complex primary piping systems under seismic loading is a difficult analysis challenge due to many factors. The initial published work on the seismic evaluations for the Atucha II plant showed that even with a seismic event with the amplitudes corresponding to the amplitudes for an event with a probability of 1e−6 per year, that a Double-Ended Guillotine Break (DEGB) was pragmatically impossible due to the incredibly high leakage rates and total loss of make-up water inventory. The critical circumferential through-wall flaw size in that case was 94-percent of the circumference. This paper discusses further efforts to show how much higher the applied accelerations would have to be to cause a DEGB for an initial circumferential through-wall crack that was 33 percent around the circumference. This flaw length would also be easily detected by leakage and loss of make-up water inventory. These analyses showed that the applied seismic peak-ground accelerations had to exceed 25 g’s for the case of this through-wall-crack to become a DEGB during a single seismic loading event. This is a factor of 80 times higher than the 1e−6 seismic event accelerations, or 240 times higher than the safe shutdown earthquake (SSE) accelerations.


2021 ◽  
Vol 9 (2B) ◽  
Author(s):  
YOUSSEF MORGHI ◽  
Amir Zacarias Mesquita ◽  
Ana Rosa BALIZA MAIA

In Brazil, according to Cnen standard, a nuclear power plant has authorization to operate for 40 years. Angra 1 commercial operation started in 1985 and it has license to operate until 2024. Eletronuclear aims to extend the operation of the Angra 1 plant from 40 to 60 years. To obtain the license renewal by more than 20 years (long-term operation), Eletronuclear will need to meet the requirements of 10 CFR Part 54, Cnen NT-CGRC-007/18 and NT-CGRC-008/18 (Cnen technical notes). To obtain a license renewal to a long-term operation it is necessary to demonstrate that the plants will operate according to safety requirements, through analysis, testing, aging management, system upgrades, as well as additional inspections. Plant operators and regulators must always ensure that plant safety is maintained and, when it is possible, strengthened during the long-term operation of the plant. One of the documents to obtain a license renewal to a long-term operation is the Quality Assurance Program (QAP). Angra 1 has a QAP according to 10CFR 50 App B and Cnen NN 1.16 for safety related items. However, according to 10 CFR50.34, Nureg-1800 Appendix A.2, Nureg-1801 Appendix A-1 of Nuclear Regulatory Commission (NRC) and NT-CGRC-007/18 and NT-CGRC-008/18 of Cnen, the QAP needs to include the items that are not safety related but are included in the Aging Management. This article will discuss the Angra 1 QAP for the license renewal to a long-term operation according the standards approved by Cnen.


Author(s):  
Joseph S. Miller

The United States utilities started preparing for external events that could lead to a loss of all ac power in the 1980’s, when the Station Blackout (SBO) rulemaking was first introduced by the United States Nuclear Regulatory Commission (USNRC). Following the events at the Fukushima Dai-ichi nuclear power plant on March 11, 2011, the USNRC established a senior-level agency task force referred to as the Near-Term Task Force (NTTF). The NTTF was tasked with conducting a systematic, methodical review of Nuclear Regulatory Commission (NRC) regulations and processes to determine if the agency should make additional improvements to these programs in light of the events at Fukushima Dai-ichi. As a result of this review, the NTTF developed a comprehensive set of recommendations, documented in SECY-11-0093, “Near-Term Report and Recommendations for Agency Actions Following the Events in Japan,” dated July 12, 2011. Documentation of the staff’s efforts is contained in SECY-11-0124, “Recommended Actions to be Taken without Delay from the Near-Term Task Force Report,” dated September 9, 2011, and SECY-11-0137, “Prioritization of Recommended Actions to be Taken in Response to Fukushima Lessons Learned,” dated October 3, 2011. To satisfy some of the NRC’s recommendations, the industry described its proposal for a Diverse and Flexible Mitigation Capability (FLEX), as documented in Nuclear Energy Institute’s (NEI) letter, dated December 16, 2011 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML11353A008). FLEX was proposed as a strategy to fulfill the key safety functions of core cooling, containment integrity, and spent fuel cooling. The events at Fukushima Dai-ichi highlight the possibility that extreme natural phenomena could challenge the prevention, mitigation and emergency preparedness defense-in-depth layers. At Fukushima, limitations in time and unpredictable conditions associated with the accident significantly challenged attempts by the responders to preclude core damage and containment failure. During the events in Fukushima, the challenges faced by the operators were beyond any faced previously at a commercial nuclear reactor. NRC Order 12-049 (Ref. 1) and NRC Interim Staff Guidance JLD-ISG-2012-01 (Ref. 6) provided additional requirements to mitigate beyond-design-basis external events. These additional requirements impose guidance and strategies to be available if the loss of power, motive force and normal access to the ultimate heat sink to prevent fuel damage in the reactor and spent fuel pool affected all units at a site simultaneously. The NEI submitted document NEI 12-06, “Diverse and Flexible Coping Strategies (FLEX) Implementation Guide” in August 2012 (ADAMS Accession No. ML12242A378) to provide specifications for the nuclear power industry in the development, implementation, and maintenance of guidance and strategies in response to NRC Order EA-12-049. The US utilities are currently proposing modifications to their plants that will follow specifications provided in NEI 12-06. This paper presents some of the NEI 12-06 requirements and some of the proposed modifications proposed by the US utilities.


Author(s):  
John M. O'Hara

The purpose of this paper is to discuss the role of human factors engineering (HFE) guidelines in the evaluation of complex human-machine systems, such as advanced nuclear power plants. Advanced control rooms will utilize human-system interface (HSI) technologies that can have significant implications for plant safety in that they will affect the ways in which plant personnel interact with the system. In order to protect public health and safety, the U.S. Nuclear Regulatory Commission reviews the HFE aspects of plant HSIs to ensure that they are designed to HFE principles and that operator performance and reliability are appropriately supported. Evaluations using HFE guidelines are an important part of the overall review methodology. The Advanced HSI Design Review Guideline (DRG) was developed to provide these review criteria. This paper will address (1) the issues associated with guideline-based evaluations, (2) DRG development and validation, and (3) the DRG review procedures.


Sign in / Sign up

Export Citation Format

Share Document