Evaluation of Complex Human-Machine Systems Using HFE Guidelines

Author(s):  
John M. O'Hara

The purpose of this paper is to discuss the role of human factors engineering (HFE) guidelines in the evaluation of complex human-machine systems, such as advanced nuclear power plants. Advanced control rooms will utilize human-system interface (HSI) technologies that can have significant implications for plant safety in that they will affect the ways in which plant personnel interact with the system. In order to protect public health and safety, the U.S. Nuclear Regulatory Commission reviews the HFE aspects of plant HSIs to ensure that they are designed to HFE principles and that operator performance and reliability are appropriately supported. Evaluations using HFE guidelines are an important part of the overall review methodology. The Advanced HSI Design Review Guideline (DRG) was developed to provide these review criteria. This paper will address (1) the issues associated with guideline-based evaluations, (2) DRG development and validation, and (3) the DRG review procedures.

Author(s):  
John O’Hara ◽  
Stephen Fleger

The U.S. Nuclear Regulatory Commission (NRC) evaluates the human factors engineering (HFE) of nuclear power plant design and operations to protect public health and safety. The HFE safety reviews encompass both the design process and its products. The NRC staff performs the reviews using the detailed guidance contained in two key documents: the HFE Program Review Model (NUREG-0711) and the Human-System Interface Design Review Guidelines (NUREG-0700). This paper will describe these two documents and the method used to develop them. As the NRC is committed to the periodic update and improvement of the guidance to ensure that they remain state-of-the-art design evaluation tools, we will discuss the topics being addressed in support of future updates as well.


Author(s):  
John O'Hara ◽  
William Stubler ◽  
William Brown ◽  
Jerry Wachtel ◽  
J. Persensky

Advanced human-system interface (HSI) technologies are being developed in the commercial nuclear power industry. These HSIs may have significant implications for plant safety in that they will affect the ways in which the operator interacts with and supervises an increasingly complex system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of nuclear plants to ensure that operator performance and reliability are supported. The NRC is developing guidance to support its review of these advanced designs. The guidance consists of an evaluation methodology and an extensive set of human factors guidelines which are used in one aspect of the evaluation. The paper describes the guidance development of the evaluation methodology and the guidelines. While originally developed for nuclear plant evaluation, the methodology is applicable to other types of complex human-machine systems as well.


Author(s):  
Ronald L. Boring ◽  
Thomas A. Ulrich ◽  
Roger Lew

The Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE) framework was introduced in 2015 to support human factors evaluations needed for control room upgrades at nuclear power plants. NUREG-0711, the Human Factors Engineering Program Review Model, is used by the U.S. Nuclear Regulatory Commission to review human factors activities associated with human-system interfaces at nuclear power plants, and GONUKE is anchored to the phases of development and design in NUREG-0711. This paper addresses five considerations to help users of GONUKE better apply the framework to evaluations for NUREG-0711 and beyond. These five considerations are: (1) GONUKE only specifies evaluation, not design; (2) GONUKE is a framework, not a method or process; (3) GONUKE goes beyond NUREG-0711 requirements; (4) GONUKE application shouldfollow a graded approach; (5) different evaluations are required fo r formative vs. summative phases.


Author(s):  
Ronald C. Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed and approved, including the “traditional” reactor designs, the passive safe shutdown designs and the small modular reactors (SMRs). The American Society of Mechanical Engineers (ASME) provides specific Codes used to perform preservice inspection/testing and inservice inspection/testing for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for Design Certifications and Combined Licenses (COLs) under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” in Title 10 of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or following January 1, 2000. The New Reactors OM Code (NROMC) Task Group (TG) of the ASME Code for Operation and Maintenance of Nuclear Power Plants (NROMC TG) is assigned the task of ensuring that the preservice testing (PST) and IST provisions in the ASME OM Code to address pumps, valves, and dynamic restraints (snubbers) in post-2000 nuclear power plants are adequate to provide reasonable assurance that the components will operate as needed when called upon. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in non-safety systems in passive post-2000 reactors including SMRs.


Author(s):  
Thomas G. Scarbrough

In a series of Commission papers, the U.S. Nuclear Regulatory Commission (NRC) described its policy for inservice testing (IST) programs to be developed and implemented at nuclear power plants licensed under 10 CFR Part 52. This paper discusses the expectations for IST programs based on those Commission policy papers as applied in the NRC staff review of combined license (COL) applications for new reactors. For example, the design and qualification of pumps, valves, and dynamic restraints through implementation of American Society of Mechanical Engineers (ASME) Standard QME-1-2007, “Qualification of Active Mechanical Equipment Used in Nuclear Power Plants,” as accepted in NRC Regulatory Guide (RG) 1.100 (Revision 3), “Seismic Qualification of Electrical and Active Mechanical Equipment and Functional Qualification of Active Mechanical Equipment for Nuclear Power Plants,” will enable IST activities to assess the operational readiness of those components to perform their intended functions. ASME has updated the Operation and Maintenance of Nuclear Power Plants (OM Code) to improve the IST provisions for pumps, valves, and dynamic restraints that are incorporated by reference in the NRC regulations with applicable conditions. In addition, lessons learned from performance experience and testing of motor-operated valves (MOVs) will be implemented as part of the IST programs together with application of those lessons learned to other power-operated valves (POVs). Licensee programs for the Regulatory Treatment of Non-Safety Systems (RTNSS) will be implemented for components in active nonsafety-related systems that are the first line of defense in new reactors that rely on passive systems to provide reactor core and containment cooling in the event of a plant transient. This paper also discusses the overlapping testing provisions specified in ASME Standard QME-1-2007; plant-specific inspections, tests, analyses, and acceptance criteria; the applicable ASME OM Code as incorporated by reference in the NRC regulations; specific license conditions; and Initial Test Programs as described in the final safety analysis report and applicable RGs. Paper published with permission.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jinghan Zhang ◽  
Jun Zhao ◽  
Jiejuan Tong

Nuclear safety goal is the basic standard for limiting the operational risks of nuclear power plants. The statistics of societal risks are the basis for nuclear safety goals. Core damage frequency (CDF) and large early release frequency (LERF) are typical probabilistic safety goals that are used in the regulation of water-cooled reactors currently. In fact, Chinese current probabilistic safety goals refer to the Nuclear Regulatory Commission (NRC) and the International Atomic Energy Agency (IAEA), and they are not based on Chinese societal risks. And the CDF and LERF proposed for water reactor are not suitable for high-temperature gas-cooled reactors (HTGR), because the design of HTGR is very different from that of water reactor. And current nuclear safety goals are established for single reactor rather than unit or site. Therefore, in this paper, the development of the safety goal of NRC was investigated firstly; then, the societal risks in China were investigated in order to establish the correlation between the probabilistic safety goal of multimodule HTGR and Chinese societal risks. In the end, some other matters about multireactor site were discussed in detail.


1980 ◽  
Vol 24 (1) ◽  
pp. 123-123
Author(s):  
Linda O. Hecht

Due to the concern for safety the nuclear power industry in the United States has fostered the use of reliability analysis to assess system performance and the impact of system failure on overall plant safety. The need for system and component failure rate data has been recognized and has spurred such efforts as NPRDS (Nuclear Power Research Data System) and IEEE's Std 500 (The Reliability Data Manual). Reliability modeling techniques have been developed for application to nuclear systems and are presently being considered by the Nuclear Regulatory Commission for licensing purposes.


Author(s):  
Eugene Imbro ◽  
Thomas G. Scarbrough

The U.S. Nuclear Regulatory Commission (NRC) has established an initiative to risk-inform the requirements in Title 10 of the Code of Federal Regulations (10 CFR) for the regulatory treatment of structures, systems, and components (SSCs) used in commercial nuclear power plants. As discussed in several Commission papers (e.g., SECY-99-256 and SECY-00-0194), Option 2 of this initiative involves categorizing plant SSCs based on their safety significance, and specifying treatment that would provide an appropriate level of confidence in the capability of those SSCs to perform their design functions in accordance with their risk categorization. The NRC has initiated a rulemaking effort to allow licensees of nuclear power plants in the United States to implement the Option 2 approach in lieu of the “special treatment requirements” of the NRC regulations. In a proof-of-concept effort, the NRC recently granted exemptions from the special treatment requirements for safety-related SSCs categorized as having low risk significance by the licensee of the South Texas Project (STP) Units 1 and 2 nuclear power plant, based on a review of the licensee’s high-level objectives of the planned treatment for safety-related and high-risk nonsafety-related SSCs. This paper discusses the NRC staff’s views regarding the treatment of SSCs at STP described by the licensee in its updated Final Safety Analysis Report (FSAR) in support of the exemption request, and provides the status of rulemaking that would incorporate risk insights into the treatment of SSCs at nuclear power plants.


Author(s):  
David Alley

This paper provides a historical perspective on the need for, and development of, buried and underground piping tanks programs at nuclear power plants. Nuclear power plant license renewal activities, Nuclear Regulatory Commission Buried Piping Action Plan, and the rationale for addressing the issue of buried pipe through an industry initiative as opposed to regulation are discussed. The paper also addresses current NRC activities including the results of Nuclear Regulatory Commission inspections of buried piping programs at nuclear power plants as well as Nuclear Regulatory Commission involvement in industry and standards development organizations. Finally, the paper outlines the Nuclear Regulatory Commission’s future plans concerning the issue of buried piping at US nuclear power plants.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Stephen A. Hambric ◽  
Samir Ziada ◽  
Richard J. Morante

The United States Nuclear Regulatory Commission (USNRC) has approved several extended power uprates (EPU) for Boiling Water Reactors (BWRs). In some of the BWRs, operating at the higher EPU power levels and flow rates led to high-cycle fatigue damage of Steam Dryers, including the generation of loose parts. Since those failures occurred, all BWR owners proposing EPUs have been required by the USNRC to ensure that the steam dryers would not experience high-cycle fatigue cracking. This paper provides an overview of BWR steam dryer design; the fatigue failures that occurred at the Quad Cities (QC) nuclear power plants and their root causes; a brief history of BWR EPUs; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluation methods (static and alternating stress).


Sign in / Sign up

Export Citation Format

Share Document