scholarly journals Molecular Chaperones and Co-Chaperones in Parkinson Disease

2012 ◽  
Vol 18 (6) ◽  
pp. 589-601 ◽  
Author(s):  
Hemi Dimant ◽  
Darius Ebrahimi-Fakhari ◽  
Pamela J. McLean

Parkinson disease, a progressive neurodegenerative disorder, is caused by the pathological accumulation of proteins, including the ubiquitous presynaptic protein α-synuclein. Alterations in the metabolism of α-synuclein have clearly been linked to neurodegeneration, and early steps in the pathological sequence of this protein include the formation of oligomers, fibrils, and small aggregates. Targeting these early steps of oligomerization is one of the main therapeutic approaches in the quest to develop disease-modifying agents. Molecular chaperones, molecules that can mediate the proper folding and refolding of client proteins, are vital to cell function and survival and thus have been explored as potential therapeutic agents. Important to Parkinson disease, chaperones are capable of preventing α-synuclein misfolding, oligomerization, and aggregate formation as shown in vitro and in Parkinson disease animal models. Furthermore, chaperones and associated co-chaperones are closely linked to pathways of protein degradation, like the ubiquitin-proteasome system and autophagy, and are thus able to remove irreversibly misfolded proteins. In this review, we summarize the role of molecular chaperones in Parkinson disease models and discuss the importance of preserving protein homeostasis to prevent neurodegeneration. We also review the growing number of exciting studies that have targeted molecular chaperone function as a novel therapeutic approach.

Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Dina Aweida ◽  
Shenhav Cohen

Protein degradation maintains cellular integrity by regulating virtually all biological processes, whereas impaired proteolysis perturbs protein quality control, and often leads to human disease. Two major proteolytic systems are responsible for protein breakdown in all cells: autophagy, which facilitates the loss of organelles, protein aggregates, and cell surface proteins; and the ubiquitin-proteasome system (UPS), which promotes degradation of mainly soluble proteins. Recent findings indicate that more complex protein structures, such as filamentous assemblies, which are not accessible to the catalytic core of the proteasome in vitro, can be efficiently degraded by this proteolytic machinery in systemic catabolic states in vivo. Mechanisms that loosen the filamentous structure seem to be activated first, hence increasing the accessibility of protein constituents to the UPS. In this review, we will discuss the mechanisms underlying the disassembly and loss of the intricate insoluble filamentous myofibrils, which are responsible for muscle contraction, and whose degradation by the UPS causes weakness and disability in aging and disease. Several lines of evidence indicate that myofibril breakdown occurs in a strictly ordered and controlled manner, and the function of AAA-ATPases is crucial for their disassembly and loss.


2022 ◽  
Vol 12 ◽  
Author(s):  
Aida Kozlic ◽  
Nikola Winter ◽  
Theresia Telser ◽  
Jakob Reimann ◽  
Katrin Rose ◽  
...  

The N-degron pathway is a branch of the ubiquitin-proteasome system where amino-terminal residues serve as degradation signals. In a synthetic biology approach, we expressed ubiquitin ligase PRT6 and ubiquitin conjugating enzyme 2 (AtUBC2) from Arabidopsis thaliana in a Saccharomyces cerevisiae strain with mutation in its endogenous N-degron pathway. The two enzymes re-constitute part of the plant N-degron pathway and were probed by monitoring the stability of co-expressed GFP-linked plant proteins starting with Arginine N-degrons. The novel assay allows for straightforward analysis, whereas in vitro interaction assays often do not allow detection of the weak binding of N-degron recognizing ubiquitin ligases to their substrates, and in planta testing is usually complex and time-consuming.


Author(s):  
Cam Patterson ◽  
J������������������rg H������������������hfeld

Author(s):  
Abhinav Anand ◽  
Neha Sharma ◽  
Monica Gulati ◽  
Navneet Khurana

Alzheimer's disease (AD), exhibiting accumulation of amyloid beta (Aβ) peptide as a foremost protagonist, is one of the top five causes of deaths. It is a neurodegenerative disorder (ND) that causes a progressive decline in memory and cognitive abilities. It is characterized by deposition of Aβ plaques and neurofibrillary tangles (NFTs) in the neurons, which in turn causes a decline in the brain acetylcholine levels. Aβ hypothesis is the most accepted hypothesis pertaining to the pathogenesis of AD. Amyloid Precursor Protein (APP) is constitutively present in brain and it is cleaved by three proteolytic enzymes (i.e., alpha, beta, and gamma secretases). Beta and gamma secretases cleave APP to form Aβ. Ubiquitin Proteasome System (UPS) is involved in the clearing of Aβ plaques. AD also involves impairment in UPS. The novel disease-modifying approaches involve inhibition of beta and gamma secretases. A number of clinical trials are going on worldwide with moieties targeting beta and gamma secretases. This chapter deals with an overview of APP and its enzymatic cleavage leading to AD.


Author(s):  
Abhinav Anand ◽  
Neha Sharma ◽  
Monica Gulati ◽  
Navneet Khurana

Alzheimer's disease (AD), exhibiting accumulation of amyloid beta (Aβ) peptide as a foremost protagonist, is one of the top five causes of deaths. It is a neurodegenerative disorder (ND) that causes a progressive decline in memory and cognitive abilities. It is characterized by deposition of Aβ plaques and neurofibrillary tangles (NFTs) in the neurons, which in turn causes a decline in the brain acetylcholine levels. Aβ hypothesis is the most accepted hypothesis pertaining to the pathogenesis of AD. Amyloid Precursor Protein (APP) is constitutively present in brain and it is cleaved by three proteolytic enzymes (i.e., alpha, beta, and gamma secretases). Beta and gamma secretases cleave APP to form Aβ. Ubiquitin Proteasome System (UPS) is involved in the clearing of Aβ plaques. AD also involves impairment in UPS. The novel disease-modifying approaches involve inhibition of beta and gamma secretases. A number of clinical trials are going on worldwide with moieties targeting beta and gamma secretases. This chapter deals with an overview of APP and its enzymatic cleavage leading to AD.


2020 ◽  
Vol 21 (11) ◽  
pp. 4151
Author(s):  
Lucie Tumova ◽  
Michal Zigo ◽  
Peter Sutovsky ◽  
Marketa Sedmikova ◽  
Pavla Postlerova

Sperm capacitation, one of the key events during successful fertilization, is associated with extensive structural and functional sperm remodeling, beginning with the modification of protein composition within the sperm plasma membrane. The ubiquitin-proteasome system (UPS), a multiprotein complex responsible for protein degradation and turnover, participates in capacitation events. Previous studies showed that capacitation-induced shedding of the seminal plasma proteins such as SPINK2, AQN1, and DQH from the sperm surface is regulated by UPS. Alterations in the sperm surface protein composition also relate to the porcine β-microseminoprotein (MSMB/PSP94), seminal plasma protein known as immunoglobulin-binding factor, and motility inhibitor. MSMB was detected in the acrosomal region as well as the flagellum of ejaculated boar spermatozoa, while the signal disappeared from the acrosomal region after in vitro capacitation (IVC). The involvement of UPS in the MSMB degradation during sperm IVC was studied using proteasomal interference and ubiquitin-activating enzyme (E1) inhibiting conditions by image-based flow cytometry and Western blot detection. Our results showed no accumulation of porcine MSMB either under proteasomal inhibition or under E1 inhibiting conditions. In addition, the immunoprecipitation study did not detect any ubiquitination of sperm MSMB nor was MSMB detected in the affinity-purified fraction containing ubiquitinated sperm proteins. Based on our results, we conclude that UPS does not appear to be the regulatory mechanism in the case of MSMB and opening new questions for further studies. Thus, the capacitation-induced processing of seminal plasma proteins on the sperm surface may be more complex than previously thought, employing multiple proteolytic systems in a non-redundant manner.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
I-Cheng Chen ◽  
Kuo-Hsuan Chang ◽  
Yi-Jing Chen ◽  
Yi-Chun Chen ◽  
Guey-Jen Lee-Chen ◽  
...  

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion within the ATXN3/MJD1 gene. The expanded CAG repeats encode a polyglutamine (polyQ) tract at the C-terminus of the ATXN3 protein. ATXN3 containing expanded polyQ forms aggregates, leading to subsequent cellular dysfunctions including an impaired ubiquitin-proteasome system (UPS). To investigate the pathogenesis of SCA3 and develop potential therapeutic strategies, we established induced pluripotent stem cell (iPSC) lines from SCA3 patients (SCA3-iPSC). Neurons derived from SCA3-iPSCs formed aggregates that are positive to the polyQ marker 1C2. Treatment with the proteasome inhibitor, MG132, on SCA3-iPSC-derived neurons downregulated proteasome activity, increased production of radical oxygen species (ROS), and upregulated the cleaved caspase 3 level and caspase 3 activity. This increased susceptibility to the proteasome inhibitor can be rescued by a Chinese herbal medicine (CHM) extract NH037 (from Pueraria lobata) and its constituent daidzein via upregulating proteasome activity and reducing protein ubiquitination, oxidative stress, cleaved caspase 3 level, and caspase 3 activity. Our results successfully recapitulate the key phenotypes of the neurons derived from SCA3 patients, as well as indicate the potential of NH037 and daidzein in the treatment for SCA3 patients.


Sign in / Sign up

Export Citation Format

Share Document