scholarly journals Regions and Connections: Complementary Approaches to Characterize Brain Organization and Function

2019 ◽  
Vol 26 (2) ◽  
pp. 117-133 ◽  
Author(s):  
Corey Horien ◽  
Abigail S. Greene ◽  
R. Todd Constable ◽  
Dustin Scheinost

Functional magnetic resonance imaging has proved to be a powerful tool to characterize spatiotemporal patterns of human brain activity. Analysis methods broadly fall into two camps: those summarizing properties of a region and those measuring interactions among regions. Here we pose an unappreciated question in the field: What are the strengths and limitations of each approach to study fundamental neural processes? We explore the relative utility of region- and connection-based measures in the context of three topics of interest: neurobiological relevance, brain-behavior relationships, and individual differences in brain organization. In each section, we offer illustrative examples. We hope that this discussion offers a novel and useful framework to support efforts to better understand the macroscale functional organization of the brain and how it relates to behavior.

Author(s):  
Mohsen Kohan Pour ◽  
Sobhan Aarabi ◽  
Seyed Amir Hossein Batouli ◽  
Soodeh Moallemian ◽  
Mohammad Ali Oghabian

Olfactory system is a vital sensory system in mammals, giving them the ability to connect with their environment. Anosmia, or the complete loss of olfaction ability, which could be caused by injuries, is an interesting topic for inspectors with the aim of diagnosing patients. Sniffing test is currently utilized to examine if an individual is suffering from anosmia; however, functional Magnetic Resonance Imaging (fMRI) provides unique information about the structure and function of the different areas of the human brain, and therefore this noninvasive method could be used as a tool to locate the olfactory-related regions of the brain. In this study, by recruiting 31 healthy and anosmic individuals, we investigated the neural BOLD responses in the olfactory cortices following two odor stimuli, rose and eucalyptus, by using a 3T MR scanner. Comparing the two groups, we observed a network of brain areas being more active in the normal individuals when smelling the odors. In addition, a number of brain areas also showed an activation decline during the odor stimuli, which is hypothesized as a resource allocation deactivation. This study illustrated alterations in the brain activity between the normal individuals and anosmic patients when smelling odors, and could potentially help for a better anosmia diagnosis in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuka Inamochi ◽  
Kenji Fueki ◽  
Nobuo Usui ◽  
Masato Taira ◽  
Noriyuki Wakabayashi

AbstractSuccessful adaptation to wearing dentures with palatal coverage may be associated with cortical activity changes related to tongue motor control. The purpose was to investigate the brain activity changes during tongue movement in response to a new oral environment. Twenty-eight fully dentate subjects (mean age: 28.6-years-old) who had no experience with removable dentures wore experimental palatal plates for 7 days. We measured tongue motor dexterity, difficulty with tongue movement, and brain activity using functional magnetic resonance imaging during tongue movement at pre-insertion (Day 0), as well as immediately (Day 1), 3 days (Day 3), and 7 days (Day 7) post-insertion. Difficulty with tongue movement was significantly higher on Day 1 than on Days 0, 3, and 7. In the subtraction analysis of brain activity across each day, activations in the angular gyrus and right precuneus on Day 1 were significantly higher than on Day 7. Tongue motor impairment induced activation of the angular gyrus, which was associated with monitoring of the tongue’s spatial information, as well as the activation of the precuneus, which was associated with constructing the tongue motor imagery. As the tongue regained the smoothness in its motor functions, the activation of the angular gyrus and precuneus decreased.


2013 ◽  
Vol 347-350 ◽  
pp. 2516-2520
Author(s):  
Jian Hua Jiang ◽  
Xu Yu ◽  
Zhi Xing Huang

Over the last decade, functional magnetic resonance imaging (fMRI) has become a primary tool to predict the brain activity.During the past research, researchers transfer the focus from the picture to the word.The results of these researches are relatively successful. In this paper, several typical methods which are machine learning methods are introduced. And most of the methods are by using fMRI data associated with words features. The semantic features (properties or factors) support words neural representation, and have a certain commonality in the people.The purpose of the application of these methods is used for prediction or classification.


2017 ◽  
Author(s):  
Heini Saarimäki ◽  
Lara Farzaneh Ejtehadian ◽  
Enrico Glerean ◽  
liro P. Jääskeläinen ◽  
Patrik Vuilleumier ◽  
...  

The functional organization of human emotion systems as well as their neuroanatomical basis and segregation in the brain remains unresolved. Here we used pattern classification and hierarchical clustering to reveal and characterize the organization of discrete emotion categories in the human brain. We induced 14 emotions (6 “basic”, such as fear and anger; and 8 “non-basic”, such as shame and gratitude) and a neutral state in participants using guided mental imagery while their brain activity was measured with functional magnetic resonance imaging (fMRI). Twelve out of 14 emotions could be reliably classified from the fMRI signals. All emotions engaged a multitude of brain areas, primarily in midline cortices including anterior and posterior cingulate and precuneus, in subcortical regions, and in motor regions including cerebellum and premotor cortex. Similarity of subjective emotional experiences was associated with similarity of the corresponding neural activation patterns. We conclude that the emotions included in the study have discrete neural bases characterized by specific, distributed activation patterns in widespread cortical and subcortical circuits, and highlight both overlaps and differences in the locations of these for each emotion. Locally differentiated engagement of these globally shared circuits defines the unique neural fingerprint activity pattern and the corresponding subjective feeling associated with each emotion.


2021 ◽  
Author(s):  
Charlotte Caucheteux ◽  
Alexandre Gramfort ◽  
Jean-Rémi King

Language transformers, like GPT-2, have demonstrated remarkable abilities to process text, and now constitute the backbone of deep translation, summarization and dialogue algorithms. However, whether these models actually understand language is highly controversial. Here, we show that the representations of GPT-2 not only map onto the brain responses to spoken stories, but also predict the extent to which subjects understand the narratives. To this end, we analyze 101 subjects recorded with functional Magnetic Resonance Imaging while listening to 70 min of short stories. We then fit a linear model to predict brain activity from GPT-2 activations, and correlate this mapping with subjects’ comprehension scores as assessed for each story. The results show that GPT-2’s brain predictions significantly correlate with semantic comprehension. These effects are bilaterally distributed in the language network and peak with a correlation above 30% in the infero-frontal and medio-temporal gyri as well as in the superior frontal cortex, the planum temporale and the precuneus. Overall, this study provides an empirical framework to probe and dissect semantic comprehension in brains and deep learning algorithms.


2008 ◽  
Vol 24 (3) ◽  
pp. 301-302 ◽  
Author(s):  
Giacomo Bonanno ◽  
Christian List ◽  
Bertil Tungodden ◽  
Peter Vallentyne

The past fifteen years or so have witnessed considerable progress in our understanding of how the human brain works. One of the objectives of the fast-growing field of neuroscience is to deepen our knowledge of how the brain perceives and interacts with the external world. Advances in this direction have been made possible by progress in brain imaging techniques and by clinical data obtained from patients with localized brain lesions. A relatively new field within neuroscience is neuroeconomics, which focuses on individual decision making and aims to systematically classify and map the brain activity that correlates with decision-making that pertains to economic choices. Neuroeconomic studies rely heavily on functional magnetic resonance imaging (fMRI), which measures the haemodynamic response (that is, changes in the blood flow) related to neural activity in the brain.


2019 ◽  
Vol 14 (10) ◽  
pp. 1061-1072
Author(s):  
Harry Farmer ◽  
Uri Hertz ◽  
Antonia F de C Hamilton

Abstract During our daily lives, we often learn about the similarity of the traits and preferences of others to our own and use that information during our social interactions. However, it is unclear how the brain represents similarity between the self and others. One possible mechanism is to track similarity to oneself regardless of the identity of the other (Similarity account); an alternative is to track each other person in terms of consistency of their choice similarity with respect to the choices they have made before (consistency account). Our study combined functional Magnetic Resonance Imaging (fMRI) and computational modelling of reinforcement learning (RL) to investigate the neural processes that underlie learning about preference similarity. Participants chose which of two pieces of artwork they preferred and saw the choices of one agent who usually shared their preference and another agent who usually did not. We modelled neural activation with RL models based on the similarity and consistency accounts. Our results showed that activity in brain areas linked to reward and social cognition followed the consistency account. Our findings suggest that impressions of other people can be calculated in a person-specific manner, which assumes that each individual behaves consistently with their past choices.


CNS Spectrums ◽  
1999 ◽  
Vol 4 (8) ◽  
pp. 44-57
Author(s):  
Dean F. Salisbury ◽  
Brian F. O'Donnell ◽  
Paul G. Nestor ◽  
Martha E. Shenton ◽  
Robert W. McCarley

ABSTRACTThe use of different imaging modalities provides the clinician and researcher with different views of anatomy and physiology at unprecedented levels of detail. Multimodal imaging allows for noninvasive measurement of structure and function in humans during complex behavior, and thus provides information about the inner workings of the brain previously unavailable. The present paper examines the various imaging techniques available, and describes their application to the clinic—in the case of epilepsy—and to research—in the case of schizophrenia. Because the electroen-cephalogram has a dynamic response in milliseconds, it provides the best temporal sensitivity of functional measures of brain activity. When coupled with high-resolution magnetic resonance imaging measures of brain structure, this multimodal approach provides a powerful tool for understanding brain activity. Clinically, the use of multimodal imaging has provided greater precision in localization of the epileptogenic focus. For researchers attempting to determine the underlying causes of schizophrenia, the use of multimodal imaging has helped lead the field away from a specific lesion view to a more distributed system abnormality view of this disorder.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0258413
Author(s):  
Yu-Ping Tsai ◽  
Shih-Han Hung ◽  
Tsung-Ren Huang ◽  
William C. Sullivan ◽  
Shih-An Tang ◽  
...  

Graphic design thinking is a key skill for landscape architects, but little is known about the links between the design process and brain activity. Based on Goel’s frontal lobe lateralization hypothesis (FLLH), we used functional magnetic resonance imaging (fMRI) to scan the brain activity of 24 designers engaging in four design processes—viewing, copy drawing, preliminary ideas, and refinement—during graphic design thinking. The captured scans produced evidence of dramatic differences between brain activity when copying an existing graphic and when engaging in graphic design thinking. The results confirm that designs involving more graphic design thinking exhibit significantly more activity in the left prefrontal cortex. These findings illuminate the design process and suggest the possibility of developing specific activities or exercises to promote graphic design thinking in landscape architecture.


Sign in / Sign up

Export Citation Format

Share Document