scholarly journals Flexural behavior of sandwich panels with cellular wood, plywood stiffener/foam and thermoplastic composite core

2017 ◽  
Vol 21 (2) ◽  
pp. 784-805 ◽  
Author(s):  
Edgars Labans ◽  
Kaspars Kalnins ◽  
Chiara Bisagni

A series of experimental tests have been carried out on three types of novel sandwich panels mainly designed for application in lightweight mobile housing. Two types of the panels are manufactured entirely from wood-based materials while the third one presents a combination of plywood for surfaces and corrugated thermoplastic composite as a core part. All sandwich panels are designed to allow rapid one-shot manufacturing. Mechanical performance has been evaluated in four-point bending comparing the data to the reference plywood board. Additionally, finite element simulations were performed to evaluate global behavior, stress distribution and provide the basis for a reliable design tool. Obtained results show sufficient mechanical characteristics suitable for floor and wall units. Compared to a solid plywood board, sandwich alternative can reach up to 42% higher specific stiffness, at the same time maintaining sufficient strength characteristics.

Author(s):  
Silvia Greco ◽  
Luisa Molari

The good mechanical performance of bamboo, coupled with its sustainability, has boosted the idea to use it as a structural material. In some areas of the world it is regularly used in constructions but there are still countries in which there is a lack of knowledge of the mechanical properties of the locally-grown bamboo, which limits the spread of this material. Bamboo is optimized to resist to flexural actions with its peculiar micro structure along the thickness in which the amount of fibers intensifies towards the outer layer and the inner part is composed mostly of parenchyma. The flexural strength depends on the amount of fibers, whereas the flexural ductility is correlated to the parenchyma content. This study focuses on the flexural strength and ductility of six different species of untreated bamboo grown in Italy. A four-point bending test was carried out on bamboo strips in two different loading configurations relating to its microstructure. Deformation data are acquired from two strain gauges in the upper and lower part of the bamboo beam. Difference in shape and size of Italian bamboo species compared to the ones traditionally used results in added complexity when performing the tests. Such difficulties and the found solutions are also described in this work. The main goal is to reveal the flexural behavior of Italian bamboo as a functionally graded material and to expand the knowledge of European bamboo species toward its use as a structural material not only as culm but also as laminated material.


2020 ◽  
pp. 136943322097478
Author(s):  
Qi Cao ◽  
Jiadong Bao ◽  
Changjun Zhou ◽  
Xianrui Lv

This paper aims to study the flexural behavior of CFRP enclosed reinforced concrete beams with different shear reinforcement. Four-point bending tests were carried out on six concrete beams with different contents of steel fibers (0.5%, 1.0%, and 1.5%) as well as six beams with different stirrup spacing (100 mm, 150 mm, and 300 mm) without fiber. The effect of steel fiber (SF) content as well as stirrup spacing on flexural properties of concrete beams were investigated. Meanwhile, the effect of expansive agent on the properties of specimens was also studied. The data collected in this test include cracking load, ultimate load, mid-span deflection, strain of CFRP (Carbon fiber reinforced polymer), strain of longitudinal steel reinforcement as well as the failure modes. Test results show that both cracking loads and ultimate loads of the SF reinforced beam specimens are generally higher than those of the corresponding stirrup reinforced beam specimens. Experimental results also indicate that the addition of SF can improve the ductility and cracking resistance of specimens. This therefore demonstrates that it is feasible to replace stirrup reinforcement with SF as shear reinforcement. In addition, it exhibits a good agreement between experimental results and analytical predictions in cracking loads and ultimate loads.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7792
Author(s):  
Andrea Zanichelli ◽  
Angélica Colpo ◽  
Leandro Friedrich ◽  
Ignacio Iturrioz ◽  
Andrea Carpinteri ◽  
...  

In this paper, a novel implementation of the Lattice Discrete Element Method (LDEM) is proposed: in particular, the LDEM is implemented in the Ansys LS-DYNA finite element code. Such an implementation is employed to evaluate the fracture behaviour of sandwich panels under bending. First, the novel hybrid model proposed is validated by simulating some three-point bending experimental tests carried out at the University of Parma, and then it is used to model the fracture behaviour of sandwich panels under four-point bending. Failure mechanisms, damage locations, and load-deflection curves are numerically determined by employing such a novel model, and the results show a good agreement with the available experimental findings.


2021 ◽  
pp. 109963622110338
Author(s):  
Yury Solyaev ◽  
Arseniy Babaytsev ◽  
Anastasia Ustenko ◽  
Andrey Ripetskiy ◽  
Alexander Volkov

Mechanical performance of 3d-printed polyamide sandwich beams with different type of the lattice cores is investigated. Four variants of the beams are considered, which differ in the type of connections between the elements in the lattice structure of the core. We consider the pantographic-type lattices formed by the two families of inclined beams placed with small offset and connected by stiff joints (variant 1), by hinges (variant 2) and made without joints (variant 3). The fourth type of the core has the standard plane geometry formed by the intersected beams lying in the same plane (variant 4). Experimental tests were performed for the localized indentation loading according to the three-point bending scheme with small span-to-thickness ratio. From the experiments we found that the plane geometry of variant 4 has the highest rigidity and the highest load bearing capacity in the static tests. However, other three variants of the pantographic-type cores (1–3) demonstrate the better performance under the impact loading. The impact strength of such structures are in 3.5–5 times higher than those one of variant 4 with almost the same mass per unit length. This result is validated by using numerical simulations and explained by the decrease of the stress concentration and the stress state triaxiality and also by the delocalization effects that arise in the pantographic-type cores.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 556
Author(s):  
Zhenyu Zhao ◽  
Jianwei Ren ◽  
Shaofeng Du ◽  
Xin Wang ◽  
Zihan Wei ◽  
...  

Ultralight sandwich constructions with corrugated channel cores (i.e., periodic fluid-through wavy passages) are envisioned to possess multifunctional attributes: simultaneous load-carrying and heat dissipation via active cooling. Titanium alloy (Ti-6Al-4V) corrugated-channel-cored sandwich panels (3CSPs) with thin face sheets and core webs were fabricated via the technique of selective laser melting (SLM) for enhanced shear resistance relative to other fabrication processes such as vacuum brazing. Four-point bending responses of as-fabricated 3CSP specimens, including bending resistance and initial collapse modes, were experimentally measured. The bending characteristics of the 3CSP structure were further explored using a combined approach of analytical modeling and numerical simulation based on the method of finite elements (FE). Both the analytical and numerical predictions were validated against experimental measurements. Collapse mechanism maps of the 3CSP structure were subsequently constructed using the analytical model, with four collapse modes considered (face-sheet yielding, face-sheet buckling, core yielding, and core buckling), which were used to evaluate how its structural geometry affects its collapse initiation mode.


2021 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Narongkorn Krajangsawasdi ◽  
Lourens G. Blok ◽  
Ian Hamerton ◽  
Marco L. Longana ◽  
Benjamin K. S. Woods ◽  
...  

Fused deposition modelling (FDM) is a widely used additive layer manufacturing process that deposits thermoplastic material layer-by-layer to produce complex geometries within a short time. Increasingly, fibres are being used to reinforce thermoplastic filaments to improve mechanical performance. This paper reviews the available literature on fibre reinforced FDM to investigate how the mechanical, physical, and thermal properties of 3D-printed fibre reinforced thermoplastic composite materials are affected by printing parameters (e.g., printing speed, temperature, building principle, etc.) and constitutive materials properties, i.e., polymeric matrices, reinforcements, and additional materials. In particular, the reinforcement fibres are categorized in this review considering the different available types (e.g., carbon, glass, aramid, and natural), and obtainable architectures divided accordingly to the fibre length (nano, short, and continuous). The review attempts to distil the optimum processing parameters that could be deduced from across different studies by presenting graphically the relationship between process parameters and properties. This publication benefits the material developer who is investigating the process parameters to optimize the printing parameters of novel materials or looking for a good constituent combination to produce composite FDM filaments, thus helping to reduce material wastage and experimental time.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Łukasz Smakosz ◽  
Ireneusz Kreja ◽  
Zbigniew Pozorski

Abstract The current report is devoted to the flexural analysis of a composite structural insulated panel (CSIP) with magnesium oxide board facings and expanded polystyrene (EPS) core, that was recently introduced to the building industry. An advanced nonlinear FE model was created in the ABAQUS environment, able to simulate the CSIP’s flexural behavior in great detail. An original custom code procedure was developed, which allowed to include material bimodularity to significantly improve the accuracy of computational results and failure mode predictions. Material model parameters describing the nonlinear range were identified in a joint analysis of laboratory tests and their numerical simulations performed on CSIP beams of three different lengths subjected to three- and four-point bending. The model was validated by confronting computational results with experimental results for natural scale panels; a good correlation between the two results proved that the proposed model could effectively support the CSIP design process.


1991 ◽  
Vol 13 (1) ◽  
pp. 21-28 ◽  
Author(s):  
I.A. Basunbul ◽  
Mohammed Saleem ◽  
G.J. Al-Sulaimani

2017 ◽  
Vol 11 (4) ◽  
Author(s):  
Mark J. Hedgeland ◽  
Alexander Martin Clark ◽  
Mario J. Ciani ◽  
Arthur J. Michalek ◽  
Laurel Kuxhaus

An adjustable-length intramedullary (IM) nail may reduce both complications secondary to fracture fixation and manufacturing costs. We hypothesized that our novel nail would have suitable mechanical performance. To test this hypothesis, we manufactured three prototypes and evaluated them in quasi-static axial compression and torsion and quasi-static four-point bending. Prototypes were dynamically evaluated in both cyclic axial loading and four-point bending and torsion-to-failure. The prototypes exceeded expectations; they were comparable in both quasi-static axial stiffness (1.41 ± 0.37 N/m in cervine tibiae and 2.30 ± 0.63 in cadaver tibiae) and torsional stiffness (1.05 ± 0.26 N·m/deg in cervine tibiae) to currently used nails. The quasi-static four-point bending stiffness was 80.11 ± 09.360, greater than reported for currently used nails. A length-variance analysis indicates that moderate changes in length do not unacceptably alter bone-implant axial stiffness. After 103,000 cycles of axial loading, the prototype failed at the locking screws, comparable to locking screw failures seen clinically. The prototypes survived 1,000,000 cycles of four-point bend cyclic loading, as indicated by a consistent phase angle throughout cyclic loading. The torsion-to-failure test suggests that the prototype has adequate resistance to applied torques that might occur during the healing process. Together, these results suggest that our novel IM nail performs sufficiently well to merit further development. If brought to market, this adjustable-length IM nail could reduce both patient complications and healthcare costs.


Sign in / Sign up

Export Citation Format

Share Document