Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection

2017 ◽  
Vol 17 (5) ◽  
pp. 1110-1128 ◽  
Author(s):  
Deegan J Atha ◽  
Mohammad R Jahanshahi

Corrosion is a major defect in structural systems that has a significant economic impact and can pose safety risks if left untended. Currently, an inspector visually assesses the condition of a structure to identify corrosion. This approach is time-consuming, tedious, and subjective. Robotic systems, such as unmanned aerial vehicles, paired with computer vision algorithms have the potential to perform autonomous damage detection that can significantly decrease inspection time and lead to more frequent and objective inspections. This study evaluates the use of convolutional neural networks for corrosion detection. A convolutional neural network learns the appropriate classification features that in traditional algorithms were hand-engineered. Eliminating the need for dependence on prior knowledge and human effort in designing features is a major advantage of convolutional neural networks. This article presents different convolutional neural network–based approaches for corrosion assessment on metallic surfaces. The effect of different color spaces, sliding window sizes, and convolutional neural network architectures are discussed. To this end, the performance of two pretrained state-of-the-art convolutional neural network architectures as well as two proposed convolutional neural network architectures are evaluated, and it is shown that convolutional neural networks outperform state-of-the-art vision-based corrosion detection approaches that are developed based on texture and color analysis using a simple multilayered perceptron network. Furthermore, it is shown that one of the proposed convolutional neural networks significantly improves the computational time in contrast with state-of-the-art pretrained convolutional neural networks while maintaining comparable performance for corrosion detection.

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249404
Author(s):  
Jeongtae Son ◽  
Dongsup Kim

Prediction of protein-ligand interactions is a critical step during the initial phase of drug discovery. We propose a novel deep-learning-based prediction model based on a graph convolutional neural network, named GraphBAR, for protein-ligand binding affinity. Graph convolutional neural networks reduce the computational time and resources that are normally required by the traditional convolutional neural network models. In this technique, the structure of a protein-ligand complex is represented as a graph of multiple adjacency matrices whose entries are affected by distances, and a feature matrix that describes the molecular properties of the atoms. We evaluated the predictive power of GraphBAR for protein-ligand binding affinities by using PDBbind datasets and proved the efficiency of the graph convolution. Given the computational efficiency of graph convolutional neural networks, we also performed data augmentation to improve the model performance. We found that data augmentation with docking simulation data could improve the prediction accuracy although the improvement seems not to be significant. The high prediction performance and speed of GraphBAR suggest that such networks can serve as valuable tools in drug discovery.


2019 ◽  
Vol 9 (6) ◽  
pp. 1143 ◽  
Author(s):  
Sevinj Yolchuyeva ◽  
Géza Németh ◽  
Bálint Gyires-Tóth

Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form. It has a highly essential role for natural language processing, text-to-speech synthesis and automatic speech recognition systems. In this paper, we investigate convolutional neural networks (CNN) for G2P conversion. We propose a novel CNN-based sequence-to-sequence (seq2seq) architecture for G2P conversion. Our approach includes an end-to-end CNN G2P conversion with residual connections and, furthermore, a model that utilizes a convolutional neural network (with and without residual connections) as encoder and Bi-LSTM as a decoder. We compare our approach with state-of-the-art methods, including Encoder-Decoder LSTM and Encoder-Decoder Bi-LSTM. Training and inference times, phoneme and word error rates were evaluated on the public CMUDict dataset for US English, and the best performing convolutional neural network-based architecture was also evaluated on the NetTalk dataset. Our method approaches the accuracy of previous state-of-the-art results in terms of phoneme error rate.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 189
Author(s):  
Feng Liu ◽  
Xuan Zhou ◽  
Xuehu Yan ◽  
Yuliang Lu ◽  
Shudong Wang

Steganalysis is a method to detect whether the objects contain secret messages. With the popularity of deep learning, using convolutional neural networks (CNNs), steganalytic schemes have become the chief method of combating steganography in recent years. However, the diversity of filters has not been fully utilized in the current research. This paper constructs a new effective network with diverse filter modules (DFMs) and squeeze-and-excitation modules (SEMs), which can better capture the embedding artifacts. As the essential parts, combining three different scale convolution filters, DFMs can process information diversely, and the SEMs can enhance the effective channels out from DFMs. The experiments presented that our CNN is effective against content-adaptive steganographic schemes with different payloads, such as S-UNIWARD and WOW algorithms. Moreover, some state-of-the-art methods are compared with our approach to demonstrate the outstanding performance.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 936 ◽  
Author(s):  
Nebojsa Bacanin ◽  
Timea Bezdan ◽  
Eva Tuba ◽  
Ivana Strumberger ◽  
Milan Tuba

Convolutional neural networks have a broad spectrum of practical applications in computer vision. Currently, much of the data come from images, and it is crucial to have an efficient technique for processing these large amounts of data. Convolutional neural networks have proven to be very successful in tackling image processing tasks. However, the design of a network structure for a given problem entails a fine-tuning of the hyperparameters in order to achieve better accuracy. This process takes much time and requires effort and expertise from the domain. Designing convolutional neural networks’ architecture represents a typical NP-hard optimization problem, and some frameworks for generating network structures for a specific image classification tasks have been proposed. To address this issue, in this paper, we propose the hybridized monarch butterfly optimization algorithm. Based on the observed deficiencies of the original monarch butterfly optimization approach, we performed hybridization with two other state-of-the-art swarm intelligence algorithms. The proposed hybrid algorithm was firstly tested on a set of standard unconstrained benchmark instances, and later on, it was adapted for a convolutional neural network design problem. Comparative analysis with other state-of-the-art methods and algorithms, as well as with the original monarch butterfly optimization implementation was performed for both groups of simulations. Experimental results proved that our proposed method managed to obtain higher classification accuracy than other approaches, the results of which were published in the modern computer science literature.


2021 ◽  
Author(s):  
Richardson Santiago Teles Menezes ◽  
Angelo Marcelino Cordeiro ◽  
Rafael Magalhães ◽  
Helton Maia

In this paper, state-of-the-art architectures of Convolutional Neural Networks (CNNs) are explained and compared concerning authorship classification of famous paintings. The chosen CNNs architectures were VGG-16, VGG-19, Residual Neural Networks (ResNet), and Xception. The used dataset is available on the website Kaggle, under the title “Best Artworks of All Time”. Weighted classes for each artist with more than 200 paintings present in the dataset were created to represent and classify each artist’s style. The performed experiments resulted in an accuracy of up to 95% for the Xception architecture with an average F1-score of 0.87, 92% of accuracy with an average F1-score of 0.83 for the ResNet in its 50-layer configuration, while both of the VGG architectures did not present satisfactory results for the same amount of epochs, achieving at most 60% of accuracy.


Author(s):  
Tushar Goyal

Image recognition plays a foundational role in the field of computer vision and there has been extensive research to develop state-of-the-art techniques especially using Convolutional Neural Network (CNN). This paper aims to study some CNNs, heavily inspired by highly popular state-of-the-art CNNs, designed from scratch specifically for the Cifar-10 dataset and present a fair comparison between them.


Sign in / Sign up

Export Citation Format

Share Document