scholarly journals Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249404
Author(s):  
Jeongtae Son ◽  
Dongsup Kim

Prediction of protein-ligand interactions is a critical step during the initial phase of drug discovery. We propose a novel deep-learning-based prediction model based on a graph convolutional neural network, named GraphBAR, for protein-ligand binding affinity. Graph convolutional neural networks reduce the computational time and resources that are normally required by the traditional convolutional neural network models. In this technique, the structure of a protein-ligand complex is represented as a graph of multiple adjacency matrices whose entries are affected by distances, and a feature matrix that describes the molecular properties of the atoms. We evaluated the predictive power of GraphBAR for protein-ligand binding affinities by using PDBbind datasets and proved the efficiency of the graph convolution. Given the computational efficiency of graph convolutional neural networks, we also performed data augmentation to improve the model performance. We found that data augmentation with docking simulation data could improve the prediction accuracy although the improvement seems not to be significant. The high prediction performance and speed of GraphBAR suggest that such networks can serve as valuable tools in drug discovery.

2017 ◽  
Vol 17 (5) ◽  
pp. 1110-1128 ◽  
Author(s):  
Deegan J Atha ◽  
Mohammad R Jahanshahi

Corrosion is a major defect in structural systems that has a significant economic impact and can pose safety risks if left untended. Currently, an inspector visually assesses the condition of a structure to identify corrosion. This approach is time-consuming, tedious, and subjective. Robotic systems, such as unmanned aerial vehicles, paired with computer vision algorithms have the potential to perform autonomous damage detection that can significantly decrease inspection time and lead to more frequent and objective inspections. This study evaluates the use of convolutional neural networks for corrosion detection. A convolutional neural network learns the appropriate classification features that in traditional algorithms were hand-engineered. Eliminating the need for dependence on prior knowledge and human effort in designing features is a major advantage of convolutional neural networks. This article presents different convolutional neural network–based approaches for corrosion assessment on metallic surfaces. The effect of different color spaces, sliding window sizes, and convolutional neural network architectures are discussed. To this end, the performance of two pretrained state-of-the-art convolutional neural network architectures as well as two proposed convolutional neural network architectures are evaluated, and it is shown that convolutional neural networks outperform state-of-the-art vision-based corrosion detection approaches that are developed based on texture and color analysis using a simple multilayered perceptron network. Furthermore, it is shown that one of the proposed convolutional neural networks significantly improves the computational time in contrast with state-of-the-art pretrained convolutional neural networks while maintaining comparable performance for corrosion detection.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 146 ◽  
Author(s):  
Xinhua Liu ◽  
Yao Zou ◽  
Hailan Kuang ◽  
Xiaolin Ma

Face images contain many important biological characteristics. The research directions of face images mainly include face age estimation, gender judgment, and facial expression recognition. Taking face age estimation as an example, the estimation of face age images through algorithms can be widely used in the fields of biometrics, intelligent monitoring, human-computer interaction, and personalized services. With the rapid development of computer technology, the processing speed of electronic devices has greatly increased, and the storage capacity has been greatly increased, allowing deep learning to dominate the field of artificial intelligence. Traditional age estimation methods first design features manually, then extract features, and perform age estimation. Convolutional neural networks (CNN) in deep learning have incomparable advantages in processing image features. Practice has proven that the accuracy of using convolutional neural networks to estimate the age of face images is far superior to traditional methods. However, as neural networks are designed to be deeper, and networks are becoming larger and more complex, this makes it difficult to deploy models on mobile terminals. Based on a lightweight convolutional neural network, an improved ShuffleNetV2 network based on the mixed attention mechanism (MA-SFV2: Mixed Attention-ShuffleNetV2) is proposed in this paper by transforming the output layer, merging classification and regression age estimation methods, and highlighting important features by preprocessing images and data augmentation methods. The influence of noise vectors such as the environmental information unrelated to faces in the image is reduced, so that the final age estimation accuracy can be comparable to the state-of-the-art.


Author(s):  
Ramesh Adhikari ◽  
Suresh Pokharel

Data augmentation is widely used in image processing and pattern recognition problems in order to increase the richness in diversity of available data. It is commonly used to improve the classification accuracy of images when the available datasets are limited. Deep learning approaches have demonstrated an immense breakthrough in medical diagnostics over the last decade. A significant amount of datasets are needed for the effective training of deep neural networks. The appropriate use of data augmentation techniques prevents the model from over-fitting and thus increases the generalization capability of the network while testing afterward on unseen data. However, it remains a huge challenge to obtain such a large dataset from rare diseases in the medical field. This study presents the synthetic data augmentation technique using Generative Adversarial Networks to evaluate the generalization capability of neural networks using existing data more effectively. In this research, the convolutional neural network (CNN) model is used to classify the X-ray images of the human chest in both normal and pneumonia conditions; then, the synthetic images of the X-ray from the available dataset are generated by using the deep convolutional generative adversarial network (DCGAN) model. Finally, the CNN model is trained again with the original dataset and augmented data generated using the DCGAN model. The classification performance of the CNN model is improved by 3.2% when the augmented data were used along with the originally available dataset.


Author(s):  
Sachin B. Jadhav

<span lang="EN-US">Plant pathologists desire soft computing technology for accurate and reliable diagnosis of plant diseases. In this study, we propose an efficient soybean disease identification method based on a transfer learning approach by using a pre-trained convolutional neural network (CNN’s) such as AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201. The proposed convolutional neural networks were trained using 1200 plant village image dataset of diseased and healthy soybean leaves, to identify three soybean diseases out of healthy leaves. Pre-trained CNN used to enable a fast and easy system implementation in practice. We used the five-fold cross-validation strategy to analyze the performance of networks. In this study, we used a pre-trained convolutional neural network as feature extractors and classifiers. The experimental results based on the proposed approach using pre-trained AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201 networks achieve an accuracy of 95%, 96.4 %, 96.4 %, 92.1%, 93.6% respectively. The experimental results for the identification of soybean diseases indicated that the proposed networks model achieves the highest accuracy</span>


2021 ◽  
Author(s):  
Shima Baniadamdizaj ◽  
Mohammadreza Soheili ◽  
Azadeh Mansouri

Abstract Today integration of facts from virtual and paper files may be very vital for the expertise control of efficient. This calls for the record to be localized at the photograph. Several strategies had been proposed to resolve this trouble; however, they may be primarily based totally on conventional photograph processing strategies that aren't sturdy to intense viewpoints and backgrounds. Deep Convolutional Neural Networks (CNNs), on the opposite hand, have demonstrated to be extraordinarily sturdy to versions in history and viewing attitude for item detection and classification responsibilities. We endorse new utilization of Neural Networks (NNs) for the localization trouble as a localization trouble. The proposed technique ought to even localize photos that don't have a very square shape. Also, we used a newly accrued dataset that has extra tough responsibilities internal and is in the direction of a slipshod user. The end result knowledgeable in 3 exclusive classes of photos and our proposed technique has 83% on average. The end result is as compared with the maximum famous record localization strategies and cell applications.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 13
Author(s):  
Raveendra K ◽  
R Vinoth Kanna

Automatic logo based document image retrieval process is an essential and mostly used method in the feature extraction applications. In this paper the architecture of Convolutional Neural Network (CNN) was elaborately explained with pictorial representations in order to understand the complex Convolutional Neural Networks process in a simplified way. The main objective of this paper is to effectively utilize the CNN in the process of automatic logo based document image retrieval methods.  


2021 ◽  
Vol 2089 (1) ◽  
pp. 012013
Author(s):  
Priyadarshini Chatterjee ◽  
Dutta Sushama Rani

Abstract Automated diagnosis of diseases in the recent years have gain lots of advantages and potential. Specially automated screening of cancers has helped the clinicians over the time. Sometimes it is seen that the diagnosis of the clinicians is biased but automated detection can help them to come to a proper conclusion. Automated screening is implemented using either artificial inter connected system or convolutional inter connected system. As Artificial neural network is slow in computation, so Convolutional Neural Network has achieved lots of importance in the recent years. It is also seen that Convolutional Neural Network architecture requires a smaller number of datasets. This also provides them an edge over Artificial Neural Networks. Convolutional Neural Networks is used for both segmentation and classification. Image dissection is one of the important steps in the model used for any kind of image analysis. This paper surveys various such Convolutional Neural Networks that are used for medical image analysis.


2021 ◽  
Vol 5 (2) ◽  
pp. 312-318
Author(s):  
Rima Dias Ramadhani ◽  
Afandi Nur Aziz Thohari ◽  
Condro Kartiko ◽  
Apri Junaidi ◽  
Tri Ginanjar Laksana ◽  
...  

Waste is goods / materials that have no value in the scope of production, where in some cases the waste is disposed of carelessly and can damage the environment. The Indonesian government in 2019 recorded waste reaching 66-67 million tons, which is higher than the previous year, which was 64 million tons. Waste is differentiated based on its type, namely organic and anorganic waste. In the field of computer science, the process of sensing the type waste can be done using a camera and the Convolutional Neural Networks (CNN) method, which is a type of neural network that works by receiving input in the form of images. The input will be trained using CNN architecture so that it will produce output that can recognize the object being inputted. This study optimizes the use of the CNN method to obtain accurate results in identifying types of waste. Optimization is done by adding several hyperparameters to the CNN architecture. By adding hyperparameters, the accuracy value is 91.2%. Meanwhile, if the hyperparameter is not used, the accuracy value is only 67.6%. There are three hyperparameters used to increase the accuracy value of the model. They are dropout, padding, and stride. 20% increase in dropout to increase training overfit. Whereas padding and stride are used to speed up the model training process.


2017 ◽  
Vol 10 (27) ◽  
pp. 1329-1342 ◽  
Author(s):  
Javier O. Pinzon Arenas ◽  
Robinson Jimenez Moreno ◽  
Paula C. Useche Murillo

This paper presents the implementation of a Region-based Convolutional Neural Network focused on the recognition and localization of hand gestures, in this case 2 types of gestures: open and closed hand, in order to achieve the recognition of such gestures in dynamic backgrounds. The neural network is trained and validated, achieving a 99.4% validation accuracy in gesture recognition and a 25% average accuracy in RoI localization, which is then tested in real time, where its operation is verified through times taken for recognition, execution behavior through trained and untrained gestures, and complex backgrounds.


2019 ◽  
Vol 134 (1) ◽  
pp. 52-55 ◽  
Author(s):  
J Huang ◽  
A-R Habib ◽  
D Mendis ◽  
J Chong ◽  
M Smith ◽  
...  

AbstractObjectiveDeep learning using convolutional neural networks represents a form of artificial intelligence where computers recognise patterns and make predictions based upon provided datasets. This study aimed to determine if a convolutional neural network could be trained to differentiate the location of the anterior ethmoidal artery as either adhered to the skull base or within a bone ‘mesentery’ on sinus computed tomography scans.MethodsCoronal sinus computed tomography scans were reviewed by two otolaryngology residents for anterior ethmoidal artery location and used as data for the Google Inception-V3 convolutional neural network base. The classification layer of Inception-V3 was retrained in Python (programming language software) using a transfer learning method to interpret the computed tomography images.ResultsA total of 675 images from 388 patients were used to train the convolutional neural network. A further 197 unique images were used to test the algorithm; this yielded a total accuracy of 82.7 per cent (95 per cent confidence interval = 77.7–87.8), kappa statistic of 0.62 and area under the curve of 0.86.ConclusionConvolutional neural networks demonstrate promise in identifying clinically important structures in functional endoscopic sinus surgery, such as anterior ethmoidal artery location on pre-operative sinus computed tomography.


Sign in / Sign up

Export Citation Format

Share Document